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Abstract: Nitrogen content is an important indicator to characterize the growth status of rice.  UAV hyperspectral remote 
sensing technology was used to obtain the nitrogen content of rice canopy at regional scale in a timely manner.  To improve 
the accuracy of high-spectral inversion of rice canopy nitrogen content, the marine predators algorithm (MPA) was used to 
downscale the hyperspectral information in the range of 400 nm to 1000 nm by using the UAV hyperspectral image data and 
the synchronously measured rice canopy nitrogen content as the data source, from which the hyperspectral characteristic 
variables for rice nitrogen content inversion modelling were extracted.  And using the dimensionality reduction variables as 
the data base, two neural network inversion methods, including extreme learning machines (ELM), genetic algorithm 
optimization for extreme learning machines (GA-ELM), were used to establish the rice nitrogen content drone hyperspectral 
remote sensing inversion model, and the results showed that: (1) The hyperspectral range from 400 nm to 1000 nm was 
dimensionally reduced by MPA, and finally the continuous hyperspectral reflectance information was dimensionally reduced to 
four discrete hyperspectral feature wavelengths, 570, 723, 811 and 987 nm for subsequent inversion modeling of rice nitrogen 
content.  (2) In the models adopted in this study, MPA-GA-ELM has the highest accuracy, where the R2 of training data, the 
R2 of test data, the RMSE of training data, and the RMSE of test data were 07984, 0.7357, 0.4615, 0.4878, respectively.  This 
study provides data support and application basis for inverse UAV remote sensing diagnosis of nitrogen content in rice. 
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1  Introduction  

Rice is one of the important staple crops in China, among 
which rice grown in the northeastern regions of Liaoning, Jilin, and 
Heilongjiang is cold-land rice[1].  Cold-land rice is characterized 
by slow nutrient release due to low temperatures in early spring and 
low air and soil temperatures after rice transplanting.  Therefore, a 
portion of chemical fertilizer supplementation is required during 
the critical fertility period of cold-land rice.  Rice nitrogen content 
directly affects leaf color, which is the most direct kind of indicator 
of rice nutritional status.  During cold-land rice production, 
agricultural producers mostly assess whether rice is deficient in 
nitrogen nutrients by observing changes in leaf color on site, and 
then make field management decisions[2].  As land transfer in 
northeast China continues to deepen and cold rice production 
continues to expand, there is an increasing demand for intelligent 
management of rice production, and there is an urgent need to use 
information technology to conduct high-throughput, nondestructive, 
and accurate detection of cold rice nitrogen content, to assist in 
accurate decision-making in rice nutrition diagnosis, and to 
enhance the digitalization of the cold rice production process on a 
large scale[3]. 

Existing studies have shown that changes in nitrogen content  
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of rice cause changes in reflectance at the spectral level in different 
bands.  Due to the high data dimensionality of hyperspectral 
information, it is usually necessary to downscale the hyperspectral 
data before further establishing a quantitative inversion model with 
nitrogen content.  Researchers at home and abroad have made 
some research results in estimating the nitrogen content of crops 
using hyperspectral techniques[4,5]. 

In recent years, a great deal of research has been carried out in 
China and abroad on the rapid and non-destructive monitoring of 
the nitrogen content of crop leaves by hyperspectral means, both in 
dried and fresh leaves.  Some research on inversion models of 
crop nitrogen status, mainly focusing on leaf nitrogen content, leaf 
nitrogen accumulation and aboveground nitrogen accumulation of 
crops.  Xue[6] showed that the correlation between leaf nitrogen 
accumulation and canopy hyperspectral reflectance was consistent 
over the entire fertility period, and the predictive ability of the 
model for estimating leaf nitrogen accumulation was better; Zhao[7] 
showed that the response of rice leaf nitrogen accumulation to 
canopy spectral parameters was more sensitive than that of leaf 
nitrogen.  Kokaly[8] used an infrared spectrometer (NIR 
Spectrometer) to detect the reflectance spectra of dried leaf powder 
and transformed the reflectance spectra (R) with parameters such as 
1/R, log (1/R), derivative spectra (KR) and regression analysis with 
the corresponding nitrogen content data, resulting in nitrogen 
sensitive bands, and finally a regression model for nitrogen content 
was developed.  Tian[9], comprehensively analyses the 
quantitative relationship between the hyperspectral vegetation 
index of rice canopy and leaf nitrogen concentration, and the 
results showed that the three blue light bands showed a highly 
significant linear correlation with the leaf nitrogen concentration of 
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rice, and this vegetation index had a good predictive property for 
the leaf nitrogen concentration of rice.  Artificial neural networks 
are learning, fault-tolerant and real-time, and have unparalleled 
advantages for fitting non-linear problems, providing effective 
technical and theoretical support in many fields.  Research on 
artificial neural networks for hyperspectral inversion of crop 
nitrogen is also increasing.  Using the nitrogen spectral sensitivity 
index as the input variable and the canopy nitrogen content data as 
the output variable, Li Xuqing[10] used the random forest algorithm 
to construct a hyperspectral inversion model for rice canopy 
nitrogen content, and the coefficient of determination R2 reached 
above 0.81 with high model accuracy. 

In order to improve the accuracy of hyperspectral remote 
sensing diagnosis and management decision basis of nitrogen 
content in cold rice, this study used a multi-rotor UAV 
hyperspectral remote sensing platform to obtain canopy 
hyperspectral information of rice at key fertility stages, and used 
the hyperspectral information feature band selection method to 
select specific feature bands from the obtained hyperspectral band 
range, and then used the extreme learning machine (ELM) method 
to establish an inverse model of rice nitrogen content.  This study 
can provide an efficient, reliable, and accurate means of remote 
sensing monitoring technology for the detection and precise 
management of nitrogen content during large-scale rice production 
in the cold northeast China. 

2  Materials and methods 

2.1  Study area and design 
The test site was located at the precision agriculture aerial 

research base of Shenyang Agricultural University, Gengzhuang 
Town, Haicheng City, Liaoning Province (40°58'45.39"N, 
122°43'47.0064"E), and the test variety was "Japonica 653", a 
variety widely grown in Liaoning.  The experiment was conducted 
from June to September 2020, and the hyperspectral reflectance 
measurements and total nitrogen content of rice leaves were 
measured at the greening, tillering, nodulation and tasseling stages. 

The experimental plots were designed with five N fertilizer 
gradient treatments (Figure 1), N0, N1, N2, N3, and N4, 
respectively; the plots were separated from each other by field 
ridges.  N0 was the control group, i.e., no basal fertilizer was 
applied; N3 was the local standard N basal fertilizer application 
level with 150 kg/hm2, N1 and N2 were the low N fertilizer 
application levels with 50 kg/hm2 and 100 kg/hm2, respectively; N4 
was the high N fertilizer application level with 200 kg/hm2; 
phosphorus and potassium fertilizers were applied according to the 
local standard application level.  Each N fertilizer gradient was 
replicated three times, and each plot was 40 m2 (5 m×8 m), with 
randomized groups.  Nitrogen fertilizer was applied as base 
fertilizer: tiller fertilizer: spike fertilizer = 5:3:2.  Other field 
management was carried out according to the local normal level.  
Samples were collected once a week, and four samples were taken 
from each plot to measure fresh matter weight, dry matter weight 
and nitrogen content. 
2.2  UAV hyperspectral remote sensing image acquisition 

The UAV hyperspectral platform adopts the M600 PRO 
six-rotor UAV from DJI Co., Ltd. and the hyperspectral sensor uses 
the GaiaSky-mini that a built-in push-scan airborne hyper-spectral 
imaging system from Sichuan Shuang li Hepu Company (Sichuan, 
China).  The hyperspectral band range is 400-1000 nm, the 
resolution is 3.5 nm, and the number of effective bands is 170.  

 
Figure 1  Test site of this study 

 

The data acquisition time of hyperspectral remote sensing 
platform of UAV is between 10:00-11:00 a.m. in each test.  
During each flight, the period with relatively stable solar light 
intensity was selected, and the flight height of UAV is 150 m.  In 
this study, the DN value of rice canopy was transformed into the 
hyperspectral reflectance information of rice canopy by field 
calibration.  A black and white calibration blanket was placed on 
the path in the rice field.  The hyperspectral information of the 
calibration blanket is included in the hyperspectral image collected 
by the UAV during the hyperspectral acquisition process.  The 
DN value is converted into the spectral reflectance by formula (1). 
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where, ρt and DNt are the reflectance and DN values of the ground 
object to be converted, and the reflectance of the calibration 
blanket are ρ1 and ρ2, respectively; DN1 and DN2 are the DN values 
of the calibration blanket. 

We used the ENVI5.4 software to extract the hyperspectral 
data of the acquired hyperspectral remote sensing image, firstly 
using the K-means method is used for hyperspectral data 
classification.  Since the rice field is mainly composed of rice, 
water, soil and other features, and taking into account factors such 
as classification errors, the number of categories is set at twice the 
number of major features and the maximum number of categories 
is set to 6 in this study.  After that, the average spectrum of each 
area of interest was calculated as hyperspectral information for 
each test plot. 
2.3  Measurement of nitrogen content  

For each plot in the sampling point rice for the whole hole 
destructive sampling, brought back to the laboratory after the hole 
rice all fresh leaves cut off in the oven at 120°C to kill 60 min, and 
then dried at 80°C to constant weight.  After weighing and 
crushing them, the ground powder was tested for nitrogen content 
(mg/g) of the leaves using the Kjeldahl method, as follows. 

(1) Weighing and charring, put weighing paper in the 
analytical balance for zero calibration.  The dried samples were 
put on the weighing paper and weighed 0.2±0.01 g.  The weighed 
dried rice leaves were put into 50 mL conical flasks and numbered.  
100 mL of concentrated sulfuric acid solution was added to the 
conical flasks, shaken well, and put into the drying vessel for 4 h 
until the samples in the flasks were completely charred. 

(2) Boiling and distillation, add 2~3 mL of hydrogen peroxide 
solution with 30% concentration into each conical flask, then heat 
until acid mist appears, continue to heat for 10 min and remove, 
and continue to drop 2~3 mL of hydrogen peroxide solution with 
30% concentration into it, heat until the solution in the flask is clear 
and transparent.  Put the solution into a volumetric flask with a 
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range of 50 mL, let the solution cool down and fix the volume to  
50 mL.  Weigh 10 mL of boric acid solution with a concentration 
of 2% and add 1~2 drops of methyl red - bromocresol green 
indicator and place the configured boric acid solution at the outlet 
of the distiller.  Measure 5 mL of the configured hydrogen 
peroxide solution mixed with 5 mL of 10 mol/L sodium peroxide 
solution and put it into the distiller for heating and distillation.  At 
the same time, use pH test paper to test the pH of the condensate at 
the outlet of the distiller, and suspend the heating when the pH is 
equal to 7. 

(3) Titration, the boric acid solution was titrated using sulfuric 
acid at a concentration of 0.02 mol/L until the boric acid solution 
gradually turned burgundy, and the volume of sulfuric acid used 
was noted.  A blank control experiment was also conducted. 

(4) Calculation of nitrogen content of rice leaves.  The 
calculation formula was as follows. 

1 0( ) 0.014Nitrogen content (%) 100V V N
w

− × ×
= ×    (2) 

where, V1 and V0 are the volume of sulfuric acid solution used for 
the sample and the volume of sulfuric acid solution used for the 
blank experiment, respectively; N is the concentration of sulfuric 
acid solution; w is the weight of the sample[11-13]. 
 

2.4  UAV hyperspectral feature band selection based on MPA  
The full-band spectra acquired by the unmanned hyperspectral 

remote sensing system contain a large amount of redundant 
information unrelated to the nitrogen content of rice, which can 
lead to increased model error during inversion model building.  
Therefore, extracting useful information from the hyperspectral 
data is a prerequisite for building robust and accurate models.  In 
this study, the marine predators algorithm (MPA) was used to 
extract hyperspectral information, which was then used as the input 
variable of the nitrogen content inversion model.  

Marine Predators Algorithm (MPA) is a novel metaheuristic 
optimization algorithm proposed by Afshin Faramarzi et al. in 2020, 
which is inspired by the survival of the fittest theory in which 
marine predators choose the best foraging strategy between Lévy 
flight or Brownian motion.  The MPA optimization process is 
described mathematically as follows: 

(1) Initialization phase.  Similar to most metaheuristics, MPA 
randomly initializes prey positions within the search space to 
initiate the optimization process.  The mathematical description is 
described as follows: 

0 min max min( )X X rand X X= + −           (3) 
where, Xmax, Xmin are the search space range; rand( ) is the random 
number within [0, 1]. 

(2) MPA optimization phase.  At the beginning of the 
iteration, when the predator speed is faster than the prey speed the 
MPA, optimization process based on the exploration strategy is 
mathematically described as follows: 
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where, stepsice is the movement step; RB is the Brownian 
wandering random vector with a normal distribution; Elitei is the 
elite matrix constructed from the top predators; Preyi is the prey 
matrix with the same dimension as the elite matrix; ⊗ is the 
term-by-term multiplicative operator; P is equal to 0.5; R is a 
uniform random vector within [0, 1]; n is the population size; Iter, 

Max_Iter are the current and maximum number of iterations, 
respectively. 

In the middle of the iteration, when the predator and the prey 
are at the same speed, the prey is exploited based on the Lévy 
exploitation; the predator explores based on the Brownian roaming 
strategy and gradually shifts from an exploration to an exploitation 
strategy.  The mathematical description of exploitation and 
exploration is as follows: 
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where, RL is the random vector with Lévy distribution; CF = (1 – 
Iter/Max_Iter)(2 – Iter/Max_Iter), is an adaptive parameter that controls 
the step size of the predator; the other parameters are the same as 
above.  

At the end of the iteration, when the predator speed is slower 
than the prey speed, the predator uses an exploitation strategy 
based on Lévy wandering.  The mathematical description is as 
follows: 
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where the parameters have the same meaning as above. 
(3) Fish aggregation devices (FADs) or eddy effects.  This 

strategy allows the MPA to overcome early convergence problems 
in the search for an optimum,and escape from local extremes 
during the process of finding an optimum.  It is mathematically 
described as follows: 
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where, FADs are the influence probabilities, 0.2; U is a binary 
vector; r is a random number within [0, 1]; r1 and r2 are the 
random indices of the prey matrix, respectively[14-16]. 
2.5  GA-ELM inversion modeling of nitrogen content 

In this study, the extreme learning machine (ELM) model 
based on genetic algorithm (GA) was used to retrieve the nitrogen 
content of rice canopy.The ELM has been widely used in many 
fields for its advantages such as fast learning speed and small 
training error.  However, the algorithm randomly generates the 
connection weights of the input and implicit layer builds and the 
thresholds of the implicit layer neurons, and there is no need to 
adjust them during the training process, which leads to the poor 
stability and generalization ability of the inverse model built by this 
algorithm.  In this study, a genetic algorithm based on the 
evolutionary theory of superiority and inferiority, natural selection, 
and survival of the fittest species genetic ideas is used to optimize 
the ELM.  The specific implementation steps of the genetic 
algorithm optimization are as follows: 

(1) An initial population Xm×l is randomly generated, where m 
is the initial population number, the individual length l represents 
both the number of gene values in each individual and the initial 
number of weights of a neural network, and the gene values in the 
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individuals correspond to the initial weights of the neural  
network.  This study uses real number encoding for gene values, 
which can avoid the decoding process and improve the training 
efficiency. 

l = s1s2 + s2s3 + s2 + s3                (9) 
where, l is the length of the individual; s1 is the number of nodes in 
the input layer; s2 is the number of nodes in the hidden layer; s3 is 
the number of nodes in the output layer. 

(2)  The genetic algorithm calculates the output error value Ei 
and the fitness value fi for each individual in the initial population, 
and evaluates the size of the individual fitness value fi, and selects 
the individual with the larger fitness value in the initial population 
to enter the sub-population for further optimization training. 

1
1i

i
f

E
=

+
               (10) 

In the subpopulation, the probability that the i-th individual is 
selected for crossover or mutation is pi, and the crossover rate pc 
and mutation rate pm are used to determine whether the individual 
needs to be crossed over or genetically manipulated according to 
the adaptive function of the crossover rate pc and mutation rate pm.  
The values of pc and pm will change adaptively according to the 
size of the individual adaptation value fi, which can avoid problems 
such as randomization of search, slow search speed, loss of 
important genes of antibodies and reduced chance of generating 
new individuals caused by too high or too low pc and pm, and keep 
the population always diverse. 
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where, kc and km are real numbers less than 1; fc is the individual 
fitness value to be crossed; fm is the individual fitness value to be 

varied; fmax is the upper bound of the fitness value fi, and f  is the 
mean value of the fitness value fi.  The flow chart of ELM based 
on GA optimization is shown in Figure 2. 

 
Figure 2  MPA-GA-ELM method 

 

In this study, the RMSE and coefficient of determination (R2) 
were used as evaluation criteria for assessing the accuracy of the 
UAV hyperspectral remote sensing inversion of rice canopy 
nitrogen content in cold area[17,18]. 

3  Results and discussion 

3.1  Data processing 
A total of 252 sets test data samples were collected in this 

study, and the samples were divided according to the 3:1 ratio of 
training set and validation set according to the Kennard-Stone 
algorithm, 190 of which were randomly selected as the modeling 
data set and the other 62 sets as the validation data set.  The 
maximum nitrogen content of the sample set was 4.60 mg/g and the 
minimum nitrogen content was 1.02 mg/g, with a coefficient of 
variation of 0.33 (Table1). 

 

Table 1  Statistical table of nitrogen content in rice leaves 

Sample set Samples Minimum 
/mg·g-1 

Maximum 
/mg·g-1 

Mean
/mg·g-1

Coefficient of 
Variation 

Whole 252 1.02 4.60 2.82 0.33 

Training set 190 1.02 4.35 2.88 0.33 

Validation set 62 1.14 4.60 2.76 0.32 
 

3.2  Results of hyperspectral feature band selection 
The reflectance spectral data from 400 to 1000 nm obtained 

from the test plots were smoothed using the Savitzky-Golay 
convolutional smoothing algorithm, and MPA was used to extract 
the feature bands for the inversion of rice nitrogen content in this 
study.  Figure 3 shows the results of feature bands extracted by 
MPA algorithm for japonica rice canopy hyperspectral information, 
and the best feature bands are 570, 723, 811 and 987 nm. 

 
Figure 3  Hyperspectral feature wavelength 

 

From Figure 3, the feature bands extracted in this study are 
mainly in the hyperspectral feature wavelength range such as green 
region, red edge position, and near infrared band. 
3.3  Inversion results of GA-ELM for nitrogen content 

In this study, extreme learning machines (ELM), genetic 
algorithm for extreme learning machines (GA-ELM), were used to 
develop an inversion model of rice nitrogen content using the 
results of MPA downscaling as input and rice nitrogen content as 
output. 

The parameters of GA-ELM were determined after repeated 
tests: the activation function is Sigmoid, the output function is 
Purelin, the training function is trainlm, the crossover probability = 
0.6, the variation probability = 0.3 the coefficient of determination 
R2 and the root mean square error RMSE as the evaluation criteria 
of the model.  The modeling results are shown in Figure 4. 

As shown in Figure 4, among the inversion models of rice 
nitrogen content developed by the two modeling approaches, the 
GA-ELM model has better inversion than ELM, with R2 above 
0.7357 and RMSE below 0.4878 mg/g in both the training and 
validation sets (Table 2). 
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a. ELM 

 
b. GA-ELM 

Figure 4  Results of rice nitrogen content inversion 
 
 

Table 2  Results of three modeling methods by ELM, 
GA-ELM 

Methods ELM GA-ELM 

0.7476 (train) 0.7984 (train) 
R2 

0.6371 (test) 0.7357 (test) 

0.7621 (train) 0.4615 (train) 
RMSE 

0.8538 (test) 0.4878 (test) 
 

The model accuracy of the rice nitrogen content inversion 
model using the traditional limit learning machine algorithm is 
weaker than that of the rice nitrogen content inversion model using 
the genetic algorithm.  This result is mainly due to the fact that the 
model parameters of the ELM alone are set at the time of modeling 
and lack the optimization process, i.e., it is not possible to 
determine whether the given parameters are optimal solutions.  
Instead, the parameters of the ELM model are continuously 
optimized iteratively through the multi-objective function 
optimization algorithm, with the error size between the calculated 
value and the true value as the measurement basis, and the ELM 
model parameters are determined by setting the error threshold, 
thus improving the accuracy of rice nitrogen content inversion. 
3.5  Analysis of nitrogen content inversion model 

In this study, we extracted the characteristic bands of 
hyperspectral information of japonica rice canopy acquired by 
UAV through MPA method, and established the inversion model of 
rice nitrogen content using GA-optimized extreme value learning 
machine algorithm to realize the rapid monitoring and evaluation of 
UAV remote sensing inversion of rice canopy nitrogen content in 
northern China.  Since the MPA algorithm is inspired by the 

movement patterns of marine predators and prey.  The predator 
and prey update their positions according to Lévy motion or 
Brownian motion in the process of seeking advantages, and at the 
same time, the prey acts as the predator identity while being 
predated, which makes the algorithm more dynamic, faster 
convergence speed and convergence accuracy.  Therefore, in this 
paper, the mpa spectral signal dimension is compressed to reduce 
the number of feature bands, and four feature bands, 570, 723, 811 
and 987 nm, are selected and used as the input of the rice nitrogen 
content inversion model.  Since the traditional one- or multiple 
regression statistical models based on hyperspectral feature bands 
limit the accuracy of rice nitrogen content inversion to a certain 
extent, and cannot fully express the nonlinear mathematical 
relationship between spectral information and nitrogen content.  
Therefore, this paper adopts the artificial neural network-ELM, 
which has unparalleled advantages in fitting nonlinear problems, as 
the inversion model.  The inverse modeling accuracy of GA-ELM 
was better than that of ELM, probably because the GA algorithm 
optimized the input weights and hidden layer thresholds of the 
extreme learning machine, which avoided the randomized input 
weights and hidden layer thresholds of ELM and the low number of 
hidden layer nodes.  Given, the number of hidden layer nodes is 
small, the generalization ability is poor, and the calibration 
accuracy is low.  In this study, the UAV hyperspectral remote 
sensing platform was used with certain acquisition errors, and the 
number of ground samples was still relatively limited due to the 
limitation of the UAV platform.  The established nitrogen content 
inversion model was only established for the experimental rice 
varieties, and the applicability of this inversion method to other 
varieties of nitrogen content needs to be further improved.  
Therefore, in future studies, we will increase the number of 
experimental varieties and establish the inverse model of nitrogen 
content for different fertility stages of rice to improve the accuracy 
and generality of the model. 

4  Conclusions 

This paper is based on the hyperspectral remote sensing image 
data of rice unmanned aerial vehicle (UAV) in Shenyang, Liaoning, 
China, while using destructive sampling to obtain rice nitrogen 
content, and the hyperspectral remote sensing image is downscaled 
by the marine predators algorithm (MPA) to extract rice 
hyperspectral remote sensing features.  On this basis, ELM, 
GA-ELM, were used to establish the hyperspectral remote sensing 
inversion model of rice nitrogen content, and the specific 
conclusions of this study are as follows: 

(1) The hyperspectral range from 400 nm to 1000 nm was 
dimensionally reduced by MPA, and finally the continuous 
hyperspectral reflectance information was dimensionally reduced to 
four discrete hyperspectral feature wavelengths, 570, 723, 811 and 
987 nm for subsequent inversion modeling of rice nitrogen content. 

(2) In the models adopted in this study, MPA-GA-ELM has the 
highest accuracy, where the R2 of training data, the R2 of test data, 
the RMSE of training data, and the RMSE of test data were 07984, 
0.7357, 0.4615, 0.4878, respectively. 
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