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Abstract: The accurate recognition and quantitative assessment at the early stage of wheat powdery mildew (Blumeria 

graminis f. sp. tritici) are vital for precision crop management for spraying the fungicides, reducing the cost, protecting the 

environment and enhancing the quality of crop.  However, early disease detection remained highly difficult due to the subtle 

changes in the physiology and phenology of the plants at early infection stage.  In this study, two wheat cultivars with different 

disease resistances were inoculated by the powdery mildew, hyperspectral reflectance and physiological parameters of leaves 

were obtained after inoculation at early stem elongation stage.  The major contribution of this study is to extract sensitive 

wavebands and vegetation indices using sub-window permutation analysis (SPA) by fully exploiting the hyperspectral data for 

early disease identification.  Extracted sensitive features by SPA were then used as input in partial least squares-linear 

discriminant analysis (PLS-LDA) recognition model to classify the healthy and diseased wheat leaves.  Finally, validation was 

carried out with independent data to verify the accuracy of the recognition model.  The results indicated that (1) the pigment 

contents and photosynthetic capacity were changed slightly at the early infection stage but decreased rapidly with the 

aggravation of the disease severity; (2) the visible and the near infrared bands were the most sensitive to the disease at early 

infection stage; (3) the overall accuracy of the PLS-LDA model constructed with the sensitive features extracted by SPA 

method performed better than features selected conventionally by correlation analysis.  The calibration and validation 

accuracies at 5% disease severity were 85.12 and 84.43% for model based on wavelength features and were 82.14 and 85.63 for 

model constructed with spectral indices features extracted by SPA, respectively.  In conclusion, SPA is a new effective 

strategy for feature selection which has not been yet used in plant disease research, having the benefit of considering 

cooperative effect among different variables and demonstrated the potential of early disease detection.  Such a technique can 

be an efficient and economical substitute to conventional methods, especially in case of high throughput hyperspectral crop 

sensing. 
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1  Introduction  

Wheat is one of the most widely grown food crops in the world.  

Powdery mildew (Blumeria graminis f. sp. tritici), as a serious 

fungal disease, has become one of the most damaging and the most 

common diseases in wheat production with the highest incidence 
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and the most harmful damage.  In recent years, 5.9 million to    

7 million hectares of wheat fields have been suffered from the 

incidence of powdery mildew in China, and millions of tons of 

wheat yield were reduced during a serious breakout of the powdery 

mildew disease[1].  Therefore, early detection of powdery mildew 

and quantitative monitoring of the disease severity are the key to 

precision crop managements for precise application of fungicides, 

ecological safety, and yield loss reduction.  However, traditional 

field survey is time-consuming and erroneous depending on the 

knowledge and experience of the investigator.  Remote sensing 

can be used as an alternative to real-time monitoring of crop health, 

especially hyperspectral technology that has been demonstrated in 

the early detection of diseases[2-4]. 

To recognize and classify crop diseases based on hyperspectral 

data, identification of sensitive bands or spectral features sensitive 

to the disease is of great significance.  Lorenzen et al.[5] revealed 

that spectral reflectance of the leaves in the visible spectral region 

from 422 nm to 712 nm increased significantly after 6 days of 

inoculation, and a significant decrease in the near-infrared range 

was observed after 10 days of inoculation.  Graeff et al.[6] found 
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that the reflectance within the range of 490-780 nm was sensitive to 

leaf damage caused by wheat powdery mildew infections.  In 

addition to reflectance, the derivative spectral features[7-9], spectral 

vegetation indices[10,11] and spectral disease indices[12-14] have 

shown the potential to diagnose plant diseases.  For example, 

Zhang et al.[15] examined 32 spectral indices using t-test and 

correlation analysis and applied partial least square regression 

(PLSR) and multivariate linear regression (MLR) for estimating 

wheat powdery mildew at medium and late stage of disease.  Cao 

et al.[16] suggested that the red-edge peak of hyperspectral canopy 

reflectance was the most sensitive parameter for powdery mildew 

detection.  However, those studies focused on the limited 

spectrometry of certain wavelengths/bands and selected the 

sensitive wavebands based on empirical methods.  As a result, 

some characteristic bands that reflect crop diseases have not been 

exploited and utilized.  Moreover, the stability and generalization 

of features extracted by empirical methods are debatable.  Most of 

them emphasized middle and late stage of disease and a few 

focused on early infection stage. 

To address the limitations, machine learning has been 

employed to classify and identify crop diseases, such as support 

vector machine (SVM)[4], soft independent modeling of 

classification analogies (SIMCA), pattern recognition method[17], 

principal component spectra and probabilistic neural network[18,19] 

and wavelet analysis (WA)[20,21].  For example, Hamed Hamid 

Muhammed[22,23] used the feature-vector-based analysis (FVBA) 

method to determine the feature waveband of the disease sensitivity 

from the hyper spectrum of 360-900 nm.  Moshou[24]  used 

neural network (NN) to distinguish the disease which improved the 

accuracy of monitoring the disease status.  Further, Moshou[25] 

recognized the crop diseases based on self-organization map with 

more accurate performance, which was integration of hyperspectral 

information with fluorescent imaging show.  In addition to disease 

detection, some researchers also developed the distribution map of 

the crop diseases at the field and regional level[26].  

It can be learnt that various machine learning methods such as 

Support Vector Machines (SVMs), k nearest neighbors, K-means, 

Decision Trees, CWT and artificial neural networks (ANNs) have 

been employed in agricultural research for detection of different 

disease of various plants based on different spectral features but the 

knowledge about detection of wheat powdery mildew at early stage 

by machine learning method is still limited.  Our focus is 

automatic detection of wheat powdery mildew at early stage based 

on hyperspectral data by a new SPA method which has not been yet 

used in agricultural research.  

In view of the fact that plant diseases are frequently associated 

with particular visual and physiological changes of their host plants, 

we employed a comprehensive methodology based on the 

combination of different wavebands and VIs acquired from 

hyperspectral data and applied SPA to completely exploit their 

combined information, with a special focus on early detection.  

Along with spectral analyses, we also monitored dynamic 

variations of physiological and biochemical parameters of wheat in 

response to powdery mildew stress.  The early stage, in this paper, 

is defined as the period before the heading stage with 5% of leaf 

disease severity.  Given that only subtle changes occurred in the 

internal structure and external symptoms of the plants, advanced 

methods are crucial to enhance sensitive signals and extract 

spectral features for early detection of powdery mildew.  

Sub-window Permutation Analysis (SPA) is an effective 

strategy for variable selection based on Model Population Analysis 

(MPA)[27].  It has the potential to identify the informative variable 

with high accuracy and stability.  The principle of SPA is to 

consider the cooperative effects among different variables and to 

select the informative variables based on the comprehensive 

analysis of a large number of models with strict statistical criteria.  

The major contribution of SPA is that, unlike t test, it can output a 

conditional p value by implicitly taking into account the synergetic 

effect of all the other variables.  In this sense, the conditional p 

value could help to locate a good combination of informative 

variables.  SPA has been used in discrimination of camellia oil 

adulteration[28], informative gene selection[29], and revealing 

informative metabolites[30].  However, it has not been applied and 

verified in the selection of sensitive variables for crop disease.  

In this study, we investigated the feasibility of SPA approach 

to discriminate the damages of wheat leaves caused by powdery 

mildew.  In the experiment, we chose two varieties of wheat with 

different disease susceptibility and infected them with Blumeria 

graminis.  We systematically tracked the dynamic change patterns 

of the physiological and biochemical indices (i.e., pigment contents, 

photosynthetic capacity, and transpiration rate) and used 

hyperspectral instrument to record spectral responses of wheat 

leaves at the early infection stage.  The sensitive 

wavebands/indices were extracted by SPA method, and then were 

used as the inputs for partial least squares linear discriminant 

analysis (PLS-LDA) method to construct a recognition model.  

The aims of this study were 1) to illustrate the response 

characteristics of hyperspectral reflectance within the spectral 

range of 350 nm - 1000 nm under powdery mildew infection at 

early stage; 2) to evaluate the performance of features extracted by 

SPA compared to conventional spectral features; and 3) to develop 

a PLS-LDA discrimination model to detect wheat powdery mildew 

at early stage.  

2  Materials and methods 

2.1  Experimental design  

A field experiment was conducted at Pailou experimental 

station of Nanjing Agricultural University, in Qinhuai District, 

Nanjing (32°1' N, 118°15' E) from November, 2014 to June, 2015.  

Two wheat cultivars, Shengxuan 6 (Vh) and Yangfumai 4 (Vm) 

with high and moderate susceptibility to disease respectively, 

were used as experimental material.  Wheat grown in plots were 

inoculated with powdery mildew pathogen at the jointing stage 

(at 137 day after sowing) using prepared pots with infected 

seedlings, and one row of 6 plots in the east were selected as the 

disease inducement line, other 6 plots surrounded by plastic film 

in the upwind direction located in west of the field were chosen 

as the control with healthy plants, having no inoculation 

treatment.  A randomized complete-block design was used with 

three replications having a net plot size of 6 m2 (3 m×2 m).  

Other practices were conducted according to the local wheat 

production technology. 

2.2  Field measurements 

2.2.1  Leaf reflectance measurement 

Leaf reflectance was measured with an ASD Field Spec Pro 

FR2500 spectroradiometer (Analytical Spectral Devices, Boulder, 

CO, USA)[31].  This instrument records reflectance at 350-   

1000 nm with a sampling interval of 1.40 nm and a resolution of  

3 nm, and at 1000-2500 nm with a sampling interval of 2 nm and a 
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resolution of 10 nm.  The spectrum of white reference panel was 

recorded once after every 10 minutes.  Three readings were 

recorded from top, middle and bottom parts of each leaf and 

average of nine readings was calculated to represent leaf 

reflectance of single leaf.  In this study, the bands in the range of 

400-1000 nm were retained for further analysis to avoid bands with 

low signal-to-noise ratio at both ends.  

2.2.2  Measurement of leaf chlorophyll contents (LCC)   

Right after spectral measurement leaf samples were cut into 

pieces and 0.1 g of each sample placed in a vial with 25 mL ethanol 

(95%) for 48 hours for pigment extraction to determine chlorophyll 

contents.  The absorbance of the solution was measured using an 

UV–Visible spectrophotometer (Hitachi U-2800), at a wavelength 

of 665, 649 and 470 nm.  The chlorophyll a, b and carotenoid 

concentration were calculated by using the method proposed by 

Lichtenthaler[32]. 

2.2.3  Measurement of photosynthetic parameters 

Net photosynthesis rate (µmol CO2 m-2 s-1) and transpiration 

rate (mmol H2O m-2 s-1) were measured at 9:00 to 11:00 am (local 

time) on clear days, with a portable photosynthesis system 

LI-6400XT made by (LI-6400, Li-Cor Inc. USA).  Same top three 

leaves used for spectral data of each plant were selected for 

measurement and three readings per leaf were recorded and 

average was calculated. 

2.2.4  Determination of disease severity (DS)  

The diseased leaves were scanned by HP Scanjet G4050 

Scanner.  Photoshop software 10.0 was used to calculate the 

lesion area ratio of the entire leaf, which also called lesion ratio 

(LR).  The calculated severity percentage was categorized into 

nine levels as 0%, 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100%.  

For the condition between the grades, the approximate value is 

taken, as shown in Figure 1.  In this article, the disease severity of 

leaves was qualitatively categorized by two discrete levels: 

slightly-damaged leaves (those leaves with maximum disease 

severity of 5%) and healthy leaves. 

 
Figure 1  Disease severity (DS) of powdery mildew in wheat leaf 

 

2.3  Methods 

2.3.1  Vegetation indices used in this study  

In order to assess the suitability of VIs to detect and 

discriminate among healthy and infected leaves, VIs related to 

different physiological and biochemical parameters were calculated.  

In this study 12 vegetation indices and 12 derivative spectral 

features, most sensitive to these changes were adopted (Table 1). 

 

Table 1  List of vegetation indices and derivative spectral features used in this study 

Category Definition Formula or description Reference 

Vegetation 

spectral  

indices 

Narrow-band normalized difference vegetation index, 

NBNDVI 
(R850 – R680)/(R850+R680) [33] 

Triangular vegetation index, TVI 0.5[120(R750 – R550) – 200(R670 – R550)] [34] 

Photochemical reflectance index, PRI (R531 – R570)/(R531+R570) [35] 

Physiological reflectance index, PhRI (R550 – R531)/(R550+R531) [35] 

Chlorohpyll absorption ratio index, CARI 
(|a×670+R670+b|/(a2+1)0.5)×(R700/R670) 

a = (R700 – R500)/150, b = R550 –(a×550) 
[36] 

Transformed chlorophyll absorption ratio index, TCARI 3×[(R700 – R670) – 0.2×(R700 – R550)×(R700/R670)] [37] 

Modified chlorophyll absorption ratio index, MCARI [(R701 – R671) – 0.2×(R701 – R549)]/(R701/R671) [38] 

Red-edge vegetation stress index, RVSI [(R712+R752)/2] – R732 [39] 

Plant senescence reflectance index, PSRI (R680 – R500)/R750 [40] 

Anthocyanin reflectance index, ARI (R550)
-1

 –(R700)
-1 [41] 

Structure independent pigment index, SIPI (R800 – R450)/(R800 – R680) [42] 

Normalized pigment chlorophyll ration index, NPCI (R680 – R430)/(R680+R430) [43] 

Derivative 

spectral 
features 

Maximum value of 1st derivative within blue edge, Db 
Blue edge covers 490-530 nm.  Db is a maximum value of 1st order derivatives 

within the blue edge of 35 bands 
[44] 

Sum of 1st derivative values within blue edge, SDb Defined by sum of 1st order derivative values of 35 bands within the blue edge [44] 

Maximum value of 1st derivative within yellow edge, Dy 
Yellow edge covers 550-582 nm.  Dy is a maximum value of 1st order 

derivatives within the yellow edge of 28 bands 
[44] 

Sum of 1st derivative values within yellow edge ,SDy Defined by sum of 1st order derivative values of 28 bands within the yellow edge [44] 

Maximum value of 1st derivative within red edge ,Dr 
Red edge covers 670-737 nm.  Dy is a maximum value of 1st order derivatives 

within the red edge of 61 bands 
[44] 

Sum of 1st derivative values within red edge, SDr Defined by sum of 1st order derivative values of 61 bands within the red edge [44] 

Derivative 

spectral 

features 

SDr/SDb The ratio of SDr and SDb [44] 

SDr/SDy The ratio of SDr and SDy [44] 

SDy/SDb The ratio of SDy and SDb [44] 

(SDr – SDb)/(SDr+SDb) The ratio of (SDr – SDb) and (SDr+SDb) [44] 

(SDy – SDb)/(SDy+SDb) The ratio of (SDy – SDb) and (SDy+SDb) [44] 

Wavelength at Dr, REP REP is wavelength position at Dr [44] 
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2.3.2  Features selection by sub-window permutation analysis  

Sub-window permutation analysis (SPA) is a new 

statistical-based distribution and feature selection algorithm in 

which the cooperative effects of different variables are taken into 

consideration.  The algorithm steps are as follows: 

It is called a sub window when SPA extract datasets from both 

sample size and variable size.  This process is repeated N times to 

obtain N sub training set (Xtrain, Ytrain) and N sub test set (Xtest, Ytest) 

with a subset of variables.  Then the training set is input to 

PLS-LDA classifier to get sub models and sub test set is used to 

predict errors.  In all N classifiers, assuming that n (n≤N) classifiers 

include the variable j, it can be calculated prediction error called 

Normal Prediction Error (NPE) using the test set k including j (k≤n).  

When variable j is rearranged, its prediction error can also be 

obtained which is called Permuted Prediction Error (PPE).  This 

process is repeated in all n tests and provides a set of NPEk and 

PPEk (k = 1, 2,... n).  

NPEK = f(Xtest,k|Sk, Hk), k = 1,2,…n           (1) 

PPEK = f(X 
r
test,k|Sk, Hk), k = 1,2,…n           (2) 

where, Hk is the classifier set included j; Sk is the variable set of the 

classifier k; Xtest,k is the original k test and X 

r 

test,k is the k test set with 

variable j rearranged. 

Comparing the set of NPEk and PPEk: 

Dmeanj = meanj,r – meanj,k              (3) 

where, meanj,k is the mean value of NPEk; meanj,r is the mean value 

of PPEk. 

      If Dmeanj >0, variable j can improve the prediction ability of 

the model, which is regarded as a candidate for informative 

variables, whereas on the contrary, it is called noise variable.  For 

candidate variables, check the distributions of NPEk and PPEk   

through Mann-Whitney U test and calculate the corresponding P 

value.  Then calculate the conditional synergetic score (COSS) to 

indicate the importance of spectral features and the higher the COSS 

value is, the more meaningful the variable is.  COSS is described 

as the minus logarithm-transformed P value. 

 COSS = –Log10(p)                   (4) 

2.3.3  Construction of PLS-LDA model for binary classification  

Partial least square linear discriminant analysis (PLS-LDA)[45] 

was employed to classify the healthy and infected leaves.  The 

healthy leaves were without any lesions on the leaf surface denoted 

by (–1) which were called as negative type.  The infected leaves 

were with lesions just appearing on the leaves and DS was 

maximum up to 5% (the lesion ratio <7.5%) which were denoted 

by (+1) and were called as positive type.  The performance of the 

model was evaluated by the variables of confusion matrix as given 

in table 2.  While specificity is the classification accuracy of 

correctly classified healthy leaves (true negative) and sensitivity or 

recall is the accuracy of correctly classified infected leaves (true 

positive).  The overall accuracy is given by the mean of specificity 

and sensitivity which is actually the proportion of all correctly 

classified healthy and diseased leaves to the total number of leaves.       
 

Table 2  Confusion matrix for binary classification 

Category 

Predicted 

Positive Negative 

Actual 
Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

Note: evaluation criteria: 
TP

Sensitivity
TP FN

=
+

, 
TN

Specificity
TN FP

=
+

, 

TP TN
Accuracy

TP FN FP TN

+
=

+ + +
. 

 

2.3.4  Calibration and validation 
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In this study, the data of Vm were used as calibration data set.  

The sample sizes were 168, 77 infected leaves and 91 healthy 

leaves.  The data of Vh were used as validation data set.  The 

leaf sample size were 167, among which there were 81 infected 

leaves and 86 healthy leaves.  The detailed data is shown in Table 

1.  All the calculations are conducted with self-programming 

software under MATLAB R2015b. 
 

Table 3  The calibrated and validated data with varying 

proportions of lesions 

Cultivar 
Proportions of lesions 

Total Positive Negative Function 

0% 0-1% 1-2.5% 2.5-7.5% 

Vm 91 40 27 10 168 77 91 Calibration 

Vh 86 29 22 30 167 81 86 Validation 

3  Results 

3.1  Changes of leaf reflectance with different disease severity 

The dynamic change curves of DS of wheat leaves with high 

sensitivity to powdery mildew are shown in Figure 2a.   After 

inoculation, the lower leaf (T4) was infected first.  With the 

aggravation of DS, the lesions started appearing on the top third 

(T3) and the top second (T2) leaves at 7-10 days after inoculation 

(DAI).  At 20-25 DAI (at heading stage), the lesions started 

appearing on the top first (T1) leaf.  At 28-30 DAI (at flowering 

and grain filling stage), the disease outbreak was maximum.  

Analyses of the changes in spectral reflectance and its 

sensitivity  to different  disease severity levels indicated that the 

differences in reflectance of wheat leaves were smaller at the early 

stage but with the aggravation of DS , the spectral reflectance in the 

visible range (400-700 nm) and the near infrared waveband 

(760-1000 nm) displayed an increasing trend (Figure 2b).  This 

phenomenon was more obvious in the absorption valley of 680 nm.  

 
a. 

 
b. 



18   March, 2020                         Int J Precis Agric Aviat      Open Access at https://www.ijpaa.org                          Vol. 3 No. 1 

 

Figure 2  Dynamic changes of disease severity of leaves (DS) 

with the days after inoculation (DAI) (a) and the changes in the 

spectral reflectance of wheat Vh leaves with DS (b) 

3.2  Dynamic Change patterns of Pigment Contents and 

Photosynthetic Capacity  

Dynamic change patterns of chlorophyll (Chl) contents and 

carotenoids (Car) contents of T1, T2 and T3 leaves of Vh after 

being infected by Blumeria graminis are shown in Figure 3.  At 

the early stage of infection, there are no significant differences in 

Chl and Car contents of the normal and infected leaves.  As the 

days passed after inoculation, both Chl and Car contents were 

significantly reduced and exhibited the same trends in both 

cultivars.  The changes in Car contents were relatively slower as 

compared to Chl contents.     

Moreover, investigation of the dynamic change patterns of net 

photosynthetic rate (Pn) and transpiration rate (Tr) of T1, T2 and 

T3 leaves after inoculation demonstrated slight increasing trends at 

early stage but the values of both parameters decreased 

significantly with the increasing disease severity.  These changes 

were consistent with those of pigment contents.  In terms of 

different leaf positions, Pn and Tr of T1 and T2 leaves were 

significantly reduced with the aggravation of DS, but the 

differences in these parameters of T3 leaf were relatively smaller.  

 
Figure 3  The dynamic changes of LCC and Car contents (a, b, c) and Pn and Tr (d, e, f) of Vh with days after inoculation (DAI) 

 

3.3  Spectral feature extraction 

Spectral features for recognition of wheat powdery mildew at 

early stage were extracted with SPA method from spectral 

reflectance with the wavebands ranging from 400-1000 nm and 

from 24 indices calculated in this study, which were written as 

SPA + wavelength and SPA + spectral index.  It was compared 

to the features with that of sensitive wavebands and spectral 

indices selected with correlation analysis as shown in Figure 4 

and Figure 5, respectively.  The sensitive wavebands and 

sensitive indices were selected based on the relationship between 

the spectral wavebands and spectral indices with DS at p<0.01.  

The leaf spectrum of the varieties Vh and Vm were significantly 

correlated with the severity of the disease at early stage at 

675-700 nm and 711-1000 nm at p<0.01 (Figure 4).  Thus, these 

two ranges of 316 bands can be used as spectral features for   

the identification of wheat leaf health and total 24 spectral indices 

are significantly correlated to disease severity at p<0.01 (Figure 

5). 
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a. Vh  b. Vm 

 

Figure 4  Coefficient of correlation (r) for the linear correlation between the spectral reflectance of wheat leaves and  

disease severity for (a) variety Vh and (b) variety Vm 

 
a. Vh  b. Vm 

 

Figure 5  Coefficient of correlation (r) for the linear correlation between the spectral indices and disease severity for  

(a) variety Vh and (b) variety Vm 
 

3.3.1  Sensitive wavelength extracted by using SPA  

By using SPA algorithm, we calculated the statistical 

distributions before and after the position rearrangement of each 

wavelength within the range of 400-1000 nm, and ranked the order 

of the importance of each wavelength based on COSS values 

(Figure 6a).  The COSS values which were ranked the first 20 

places were 554, 569, 550, 739, 747, 749, 755, 814, 631, 757, 433, 

428, 732, 740, 746, 786, 761, 596, 750 and 768 nm.  Among these, 

number of wavebands in the red edge region were highest.  This is 

related to the highest coefficient for the correlation of spectral 

features in the red edge region with DS.    

 
a.  b. 



20   March, 2020                         Int J Precis Agric Aviat      Open Access at https://www.ijpaa.org                          Vol. 3 No. 1 

 

 
c.  d. 

 

Figure 6  COSS values of each feature wavelength (a) and each spectral index calculated by SPA algorithm (c) and the changes in 

PLS-LDA accuracy generated by full data training and cross-validation in feature bands (b) and spectral indices (d)  

with different numbers of wavebands 
 

We can see that in calibration mode (Figure 6b), the overall 

accuracy curve was monotonous, after the number reached 5, the 

overall accuracy was maintained in a certain range with 

fluctuations of small extent and reached the maximal value when 

the number of wavebands reached 16. 

In the validation mode, the accuracy was highest when the 

number of wavebands reached 12, thus, the first 12 wavebands 

were selected as the preliminary feature set extracted by SPA.  

3.3.2  Sensitive spectral indices extracted by SPA  

By using the same method described above the optimal 

combination of spectral indices was extracted from the available 

spectral indices to establish the recognition model for the health 

status of wheat leaves.  Results indicated that the first ten spectral 

indices were NPCI RVSI, SDy, CARI, PhRI, ARI, TCARI, SDb, 

(SDr–SDb)/(SDr+SDb) and SDr/SDb (Figure 6c.).    

Similarly, in both modes, the overall accuracy of the PLS-LDA 

model for the health status of wheat leaves constructed with 

different numbers of spectral indices was evaluated (Figure 6d.).  

The first 3 spectral indices i.e. were NPCI, RVSI and SDY with the 

highest COSS values were selected for diagnosis of the health 

status of wheat leaves.   

3.4  Calibration and validation of the recognition model 

The extracted spectral features mentioned above were used as 

the input variables in PLS-LDA recognition model for 

classification of healthy and diseased leaves.  Calibration and 

Leave-One-Out Cross validation (LOOCV) of model was 

performed with the data of variety (Vm) and independent variety 

validation (IVV) was performed with the data of variety (Vh).  

Table 4 and 5 show that in terms of wavelength, when the 

sensitive wavebands (316) were used to judge the health status of 

wheat leaves, the classification accuracies in calibration could 

reach over 90%.  But the performance of the validation in IVV 

was quite poor with the overall accuracy of only 65.27%, which 

indicates that the sensitive wavebands conventionally selected by 

correlation analysis are not suitable and stable for the diagnosis of 

the health status of wheat leaves of different cultivars and data, and 

also increase computational cost by using as many as 316 variables.  

While the model constructed with SPA + wavelength features was 

more stable by utilizing only 12 sensitive variables with the overall 

calibration, LOOCV and IVV validation accuracies of 85.12, 84.52 

and 84.43% respectively.  The calibration, LOOCV and IVV 

classification accuracies of PLS-LDA model based on 3 features 

extracted by SPA + spectral indices were 82.14, 80.95 and 85.63% 

respectively.  Though the calibration accuracy of model based on 

SPA + spectral indices was a bit less than that based on 24 sensitive 

spectral indices but its overall classification performance was best 

with less number of features, low computational cost and stable 

LOOCV and IVV validation results.  The results also showed that 

the sensitivity of the classification model was always greater than 

specificity. 
 

Table 4  Calibration of recognition model 

Spectral features Feature number 

Model of calibration 

Spec. Sens. Accu./% AUC/% 

Wavelength 
Sensitive wavelength 316 98.68 97.83 98.21 98.26 

SPA + wavelength 12 83.33 86.67 85.12 85.00 

Spectral index 
Sensitive spectral index 24 80.49 87.21 83.93 83.85 

SPA + spectral index 3 78.31 85.88 82.14 82.10 

Note: Sensitivity: Sens; Specificity: Spec; Accuracy (%) : Accu; AUC: area under the curve (%). 
 

Table 5  Validation of recognition model  

Spectral features 
Feature  

number 

Model of validation 

LOOCV IVV 

Spec. Sens. Accu./% AUC/% Spec. Sens. Accu/% AUC/% 

Wavelength 
Sensitive wavelength 316 92.31 94.44 93.38 93.45 60.75 73.33 65.27 67.04 

SPA + wavelength 12 83.12 85.71 84.52 84.42 83.13 85.71 84.43 84.42 
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Spectral index 
Sensitive spectral index 24 75.00 83.33 79.17 79.17 78.31 80.95 79.64 79.63 

SPA + Spectral index 3 77.78 83.91 80.95 80.84 86.08 85.23 85.63 85.65 
 

4  Discussion 

4.1  Changes in Leaf Physiological Parameters  

Pigments are the important parameters indicating the growth 

and nutritional status and biotic and abiotic stresses of crops[40,46].  

Thus, clear understanding of the dynamic responses of crop 

pigments to biotic and abiotic stresses is important and helpful for 

rapid diagnosis of crop diseases.  The results revealed that the leaf 

pigment responded slowly to the powdery mildew with a slight 

increasing trend first at the early infection stage (Figure 3a, b & c), 

probably due to the natural resistance response of plants when 

confronting any stress.  With the increase of DS, the pigment 

contents of leaves reduced rapidly (Figure 3a, b & c) that is 

consistent with previous studies of Feng et al.[8], Cao et al.[47], and 

Wang et al.[48].  The increase of DS also caused the stomatal 

structure of leaves to deteriorate, further leading to continuous 

reduction of leaf water contents[49-51] and accelerated Chlorophyll 

degradation.  Moreover, we found that the LCC of Vh reduced 

more rapidly as compared to that of Vm after the inoculation.  It is 

suggested that different wheat varieties respond differently to 

powdery mildew.   

Monitoring the changes in the photosynthetic capacity of crops 

under disease stress is important to understand the variations in the 

internal physiological mechanisms of plants in response to disease.  

It is noticed that with the appearance of disease symptoms, the 

changes in photosynthesis and transpiration rates were smaller with 

slightly increasing values at the early stage of disease and then 

decreased as the DS increased, similar to that of chlorophyll 

contents (Figure 3d, e, & f).  A slight increasing response at early 

stage is may be due to the self-mechanism of plants to resist 

external stresses and to maintain the normal physiological 

activities[52].  Photosynthetic capacity of plants is affected by 

many factors such as physical, chemical, thermal, nutrients, water 

and disease stresses.  We found that with the increase of disease 

severity and lesion ratio on the leaves, the leaf epidermis and 

tissues structures are destroyed (Figure 1).  Therefore, the 

chloroplast of leaves is destroyed which led to reduction of 

chlorophyll contents and photosynthetic rate of plants.   

Additionally, stomatal closure and reduction of leaf moisture 

contents in response of disease, could also cause reduction of 

photosynthetic and transpiration rate.  Moreover, Pn and Tr rate of 

T3 leaves (Figure 3f) were relatively smaller than T1 and T2 which 

indicated that Blumaria graminis caused more significant effects on 

the photosynthetic capacity of major functional leaves. 

Disease development was slow initially, but it became more 

serious and increased dramatically by the flowering stage (Figure 

2a).  Thus, it can be proposed that the first 20 days after infection 

are important and a key period for diagnosis, prevention and 

possible control of wheat powdery mildew.  

4.2  Leaf spectral reflectance 

The pigment, nitrogen, water and other nutritional substances 

in the leaves decrease when the crop is under disease stress, and the 

spectral reflectance in the visible light range is increased[10,35].  

This change has been observed in different types of crops affected 

with different plant diseases[20,53,54].  Our study also showed 

similar results with significant increase in spectral reflectance at 

visible region and a slight and non-significant increase at near 

infrared range under powdery mildew stress (Figure 2b).  Some 

studies found that the spectral reflectance in near infrared band was 

reduced at both leaf scale[15] and canopy scale[55,56].  At canopy 

scale, the spectral reflectance features are more affected by leaf 

area, water, and soil background.  When crop is under disease 

stress, the leaf area index of the canopy layer and the water 

contents are reduced, leading to the reduction in spectral 

reflectance in near infrared bands.  However, at leaf scale, due to 

the disposition and accumulation of the white moldy layer on the 

leaf surface could affect the reflectance to increase in both visible 

and NIR region, which might balance the effects from breakdown 

of leaf cell structures, and making the reflectance to increase in the 

NIR region but the increase was insignificant.      

Under disease stress, the sensitivities to disease in the visible 

band were higher than that in the near infrared band[57-59].  It is 

indicated that with the aggravation of DS, the damage caused by 

powdery mildew is larger to leaf pigments than that to the 

intracellular structure.  However, at early stage, the leaf spectral 

response to the disease was relatively low (Figure 2b).  The 

coefficient of the maximal correlation in the red infrared band was 

also lower than 0.4 (Figure 4).  This is because at the early stage 

of disease, the pathogenic fungi mainly multiplied, but the damage 

caused by fungus was not obvious.  At this stage, no obvious 

changes in biochemical components of plants were observed, the 

same effect has also been reported by Bushnell et al.[60].  With the 

aggravation of DS, visible symptoms started appearing on leaves 

and thus caused a series of spectral feature responses.  In addition, 

the powdery mildew symptoms at initial stage of infection mainly 

distributed on the leaf edges.  However, the central parts of the 

leaves were measured by spectral instruments during the 

experimental processes.  The reasons for appearance of the lesions 

on the leaf edges at the early stage of disease are unclear.        

4.3  SPA method for disease feature extraction  

The hyper-spectral data have the problems of large noise, 
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multi-collinearity and complicated redundancy.  To achieve the 

diagnosis and recognition of the health status of leaves, it is 

extremely important to select the appropriate methods for 

extraction of spectral features.  SPA is a new statistics-based 

distribution feature selection algorithm, considering the cooperative 

effect among different variables.  The advantage of SPA 

algorithm is the combination of the model-based cluster analysis 

and rearrangement-based method of Random forest.  The 

screening of the informative variables is not based on the single 

model, but based on a comprehensive analysis of a large number of 

models and the use of the strict statistical tests.  The informative 

variables obtained by SPA are statistically significant and stable.  

The calibration and validation accuracies of classification model 

based on features extracted by SPA method were higher and stable 

with less number of variables, as compared to that of selected by 

empirical and conventional method (Table 4 and 5).  Therefore, 

SPA has the potential to diagnosis and recognition of the health 

status of leaves.    

Sun et al.[28] conducted discriminating recognition of the 

complicated adulteration of camellia oil with near infrared spectral 

feature extracted by using SPA.  The results indicated that SPA 

method could effectively screen out the feature wavelengths, 

simplified model and improved the prediction accuracy and 

stability of the model.  Currently, SPA method has not been 

applied in agricultural remote sensing field.  Our results could 

provide a reference for the introduction of SPA method in the field 

of agricultural remote sensing.     

5  Conclusions 

In this study, our results demonstrated that the SPA coupled 

with PLS-LDA method based on sensitive bands and VIs has been 

successfully employed to identify wheat leaves infected with 

Blumaria graminis at early stage.  On the basis of conventionally 

selected sensitive bands based on correlation analysis, the 

calibration classification accuracy of PLS-LDA model reached 

98.21%, but this model did not pass the independent variety 

validation test (IVV) showing an accuracy of only 65.27%, 

indicating that the model has high computational cost of 316 

variables and is not suitable and stable for diagnosis of the health 

status of wheat leaves of different cultivars.   While the number 

of feature bands extracted with SPA technique were only 12.  The 

calibration, LOOCV and independent variety validation (IVV) 

classification accuracies of the model were 85.12, 84.52 and 

84.43% respectively.  Similarly, calibration, LOOCV and 

independent variety validation (IVV) accuracies of PLS-LDA 

model established by3 spectral indices extracted with SPA based 

technique were 82.14, 80.95 and 85.63% respectively.  Our results 

indicated that the sensitive wavebands selected with SPA technique 

are of statistical significance and the established model is highly 

stable.  Therefore, such a method can be an efficient and 

economical substitute to conventional methods, especially in case 

of high throughput hyperspectral information.  On the basis of 

these results certain sensors for practical use to detect plant 

diseases at early stage in crop fields can be developed in future.  

The applicability of this method can be tested and verified for other 

plant pathogen systems for the early and pre-symptomatic detection 

of biotic stresses in future.             
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