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Abstract: The measurement of salinized soil moisture content (SSMC) is essential to precise irrigation and avoidance of 
secondary salinization.  Visible and near infrared (VIS–NIR) spectroscopy has been effectively used to estimate soil moisture 
content (SMC) but not for SSMC.  The direct application of in-situ VIS–NIR spectroscopy to the estimation of SSMC can help 
save a large amount of time and labor, but the in-situ VIS–NIR was interfered by many factors, such as soil texture, soil surface 
debris and environmental temperature.  Spectral derivatives can be used to eliminate unnecessary interference for optimal 
spectral information, but traditional integer derivatives (i.e. first and second derivatives) often ignored some spectral 
information due to different integer order differential curves were obviously different.  In addition, the full spectrum usually 
contains redundant spectral variables.  These variables would affect the accuracy and estimation velocity of the model.  
Different combinations of fractional order derivative (FOD) and spectral variable selection algorithms (i.e. variable importance 
projection (VIP), competitive adaptive weighted sampling (CARS) and random frog algorithm (RFA)) may offer some 
alternative solutions to these problems.  In order to test the effects of these combinations on VIS–NIR spectral model 
optimization, we measured the in-situ soil spectra of 163 sites in Shahaoqu Irrigation Area, Inner Mongolia, China.  
Meanwhile, we collected soil samples and measured their SSMC and soil salt content (SSC).  Then the Extreme Learning 
Machine (ELM) model was applied to the SSMC estimation.  The results showed that SSC and SSMC had obvious effects on 
in-situ spectra.  With the increase of differential order, the spectral resolution increased gradually, but the spectral intensity 
decreased at the same time.  So, the spectral information may not increase.  However, FOD can balance the contradiction 
between spectral resolution and spectral intensity.  The estimation of ELM models based on 0.75 order derivatives that is the 
most accurate among the full spectrum ELM models.  The coefficient of determination (R2) was 0.83 and ratio of the 
performance to deviation (RPD) was 2.44.  In all the models (twenty-seven different combinations of FOD and variable 
selection algorithms), the best model was based on the combination of 0.75 derivative spectrum and random frog algorithm  
(R2 = 0.94, RPD = 3.80).  The results of this study also confirmed that the combination of RFA and FOD could effectively 
improve the accuracy of the in-situ spectral estimation of SSMC.  However, VIP was chosen as an alternative due to 
computational efficiency. 
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1  Introduction  
Soil moisture content (SMC), as an important component of  
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soil, is of great significance to heat balance, soil temperature, plant 
growth and so on[1].       It has become a common sense that salt 
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flows with water.  Soil salinity is closely related to the moisture 
content.  In the arid area of northern China, flood irrigation in 
farmland is extremely water-wasting, and prone to secondary 
salinization[2].  Therefore, agricultural scholars have endeavored 
to develop precision irrigation, the key to which is the accurate, 
quick and low-cost monitoring of saline soil moisture content. 

Accurate ex-situ measurements of soil moisture content (SMC) 
can be conducted in the laboratory (drying method)[3].  However, 
the main problem of this traditional method is water evaporation of 
soil samples during the transportation and storage of samples, so it 
can be classified as discontinuous measurement of SMC[3].  The 
SMC measured by this method cannot represent the real soil 
moisture in the field.  Compared to the ex-situ, in-situ SMC 
measurement is a more accurate and reliable alternative.  There 
are many methods for in-situ SMC measurement, such as time 
domain reflectometry, capacitive probe, and electrical resistivity 
tomography[4-7].  However, these methods have drawbacks in the 
measurement cycle and soil nondestructive testing.  Because these 
measurement methods all invade the soil, causing damage to the 
soil structure.  Moreover, the accuracy of many traditional 
measurement instruments would be affected by water soluble salt 
ions, and it is impossible to accurately measure the saline soil 
moisture content (SSMC) in salinized areas.  Visible-near infrared 
(VIS-NIR) spectroscopy is a promising method for measuring 
in-situ SMC, and it characterizes objects based on their reflectance 
in the wavelength range of 350 to 2500 nm[7].  VIS-NIR 
spectroscopy has turned out to be an effective substitute for SSMC 
prediction in the laboratory.  According to Wang et al., soil 
salinity had some negative effect on the quantitative SSMC 
prediction, so they used the salt-resistant spectral index for such 
prediction[8].  Although Wang et al used the in-situ soil dataset to 
verify that the highest precision coefficient of determination (R2) = 
0.72, it was still difficult to accurately quantify the SSMC[8].  
Therefore, it is necessary to further determine the salt-resistant 
spectral band, and further improve the accuracy of VIS-NIR 
spectrum to detect the in-situ SSMC. 

In order to improve the estimation accuracy of the in-situ 
SSMC, it is often necessary to preprocess the spectral data[9].  The 
common preprocessing methods include data transformation, 
spectral smoothing, scattering correction, spectral derivative and so 
on.  The preprocessing of the original reflection spectrum can 
improve the signal-to-noise ratio, facilitate the spectral feature and 
optimal variable extraction for subsequent analysis and 
modeling[10].  Spectral derivative is a highly applicable 
pretreatment method, which is widely used in the fields of soil, 
vegetation and chemical spectrums[11-13].  However, greatly 
different in morphology from the original spectral reflectance curve, 
the traditional integer-order derivative curve (first derivative and 
second derivative) may neglect useful information on such 
monitored property as the band information sensitive to the SSMC.  
The Fractional Order Derivative (FOD) algorithm, a mathematical 
method for reflectivity analysis, allows interpolation between 
integer-order derivatives to extract finer details from the 
spectrum[14].  In recent years, FOD have been widely used in soil 
near-infrared spectroscopy, especially in monitoring soil organic 
matter and soil salinity[15-17].  So far, few studies have applied the 
FOD algorithm to SSMC monitoring. 

Soil VIS-NIR spectrum is characterized by multi-collinearity, 
non-specificity and extensiveness.  In addition, soil is a complex 
mixture of substances, and the interaction between different 

substances may affect the spectrum.  Consequently, the soil 
properties studied will be obscured, and the general linear 
regression model will not perform well[18,19].  It is worth noting 
that the relationship between spectral data and soil properties (such 
as soil organic matter content, soil salt content) is largely nonlinear, 
and especially when the soil is salinized, the linear relationship 
between moisture and spectrum may be weakened.  Such defects 
of the linear model lead to the development of many nonlinear 
models.  Extreme learning machine (ELM) is one of them, which 
can solve the nonlinear problems and usually has relatively ideal 
prediction accuracy[20-22]. 

Spectral variable selection is an important method to further 
optimize the regression model.  Many studies have shown that this 
selection algorithm can reduce the complexity of the calibration 
model and improve the prediction performance of the model to 
some extent[23,24].  Variable selection is used to identify the most 
informative subset of a large number of variables in order to 
minimize the number of variables and exclude unreliable 
variables[25].  Many of these methods have been well applied in 
soil spectral modeling, including competitive adaptive reweighted 
sampling (CARS), variable importance for projection (VIP), 
successive projections algorithm (SPA), and gray correlation (GC), 
genetic algorithm (GA), uninformative variable elimination (UVE), 
etc[25-30].  For example, Xu et al found that CARS combined with 
support vector machine can better predict rice root density[31]; 
Hong et al.  discovered that CARS combined with FOD had the 
best performance in predicting wet soil organic matter[9].  
Similarly, VIP has a good advantage in variable selection and has 
been applied in many research fields[32,33].  Compared with the 
previous variable selection algorithms, the random frog algorithm 
(RFA) is a relatively new algorithm based on Reversible Jump 
Markov Chain Monte Carlo (RJMCMC) method[34].  This 
algorithm was first proposed for cancer-related gene selection[35].  
The advantage of this algorithm is that it requires neither any harsh 
mathematical formulas nor some previous distributions to be 
specified as in the formal RJMCMC method, which makes it easier 
to implement.  But this algorithm is rarely used in the field of soil 
spectroscopy, so it is necessary to test the applicability of RFA to 
soil spectral variable selection[36].  Different studies have shown 
that none of these three methods (i.e., VIP, CARS, RFA) is optimal 
across different data sets, so we need to systematically test them in 
the same dataset.  In addition, few studies have used variable 
selection algorithms combined with FOD to estimate in-situ SSMC.  
Therefore, FOD combined with appropriate variable selection is 
expected to be used to establish a better prediction model of in-situ 
SSMC using VIS-NIR spectroscopy. 

This study aimed to explore: (1) the effect of SSMC and SSC 
on soil spectrum; (2) the effect of FOD on the improvement of 
SSMC prediction accuracy; (3) the applicability of random frog 
algorithm in soil spectral variable selection; (4) the modeling 
performance of FOD combined with various variable selection 
algorithms, and (5) the estimated potential and spatial mapping 
effect on in-situ SSMC.  It is hoped that this study will contribute 
to the SSMC estimation. 

2  Materials & Methods 

2.1  Study Area  
The area chosen for SMC estimation is called Shahaoqu 

Irrigation Area (SIA), located in Hetao Irrigation District (HID), 
Inner Mongolia, China (Figure 1).  HID is one of the most 
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important grain and economic crop production bases and the third 
largest irrigation area in China[37].  The geographical environment 
of SIA lies to the north of the Yellow River and the south of 
Yinshan Mountain.  The climate of SIA is typically continental, 
with severe cold and little snow in winter and high temperature and 
little rain in summer.  The average annual precipitation is 155 mm, 
which is concentrated in June-August.  However, the annual 

average evaporation of SIA (20 cm evaporating dish) is 2000 mm.  
It is a typical area where agriculture fully relies on irrigation.  
Long-term unreasonable high irrigation and low drainage has led to 
a high groundwater level in the irrigation area.  This problem, 
coupled with such other factors as climate conditions, soil geology 
and topography, has made secondary salinization in SIA very 
severe[38]. 

 
Figure 1  Location maps of the study area (A inner mongolia, B. shahaoqu irrigation area). Photographs of the landscape (C saline soil,  

D severe salinization) E in-situ field experiment using the Analytical Spectral Device (ASD) FieldSpec®3 spectrometer 
 

2.2  Field Sampling and In-Situ Spectral Acquisition 
From April 10 through 20, 2019, based on the typical 

landscape features of SIA (107°05′00″-107°10′00″E, 40°52′00″- 
41°00′00″N), 162 sampling units were selected on a grid of 16 m × 
16 m, and the sample units were distributed in the cultivated area of 
the study area (Figure 1).  The soil samples and in-situ soil 
spectral data were collected at the same time.  The position of 
each sampling point was determined and recorded by GPS.  The 
specific operation is as follows. 

In this study, the in-situ spectral reflectance of the soil samples 
were acquired by the spectrometer FieldSpec®3 (350-2500 nm), 
which is manufactured by Analytical Spectral Devices Company 
(ASD,  https://mtri.org/asd.html).  The sampling intervals of the 
spectrometer were 350~1000 nm to 1.4 nm, 1000~2500 nm to 2 nm, 
and the resampling interval was 1 nm.  Soils were scanned with a 
high intensity ASD contact probe connected to the spectrometer 
with an optical fiber cable.  This probe was used to prevent the 
disturbance from stray light during the acquisition, which has a 
viewing area of 2 cm in diameter and built-in halogen light 
source[39].  The contact probe touched the soil surface vertically to 
acquire the relative reflectance (Figure 1E). 

In the field measurement process, we would choose a relatively 
flat and clean soil area to make the probe fully fit the soil surface to 
avoid the interference of environmental light.  To obtain accurate 

relative reflectance, a white spectralon panel was used to calibrate 
the spectrometer before each spectral acquisition.  In order to 
reduce random noise, five repetitive acquisitions were averaged for 
each soil sample.  The effect of dark current was considered.  
Before the spectrum measurement, we used the dark current 
removal function of the RS3 software to reduce the impact on the 
spectrum measurement.  During the acquisition of in-situ spectra 
in the field, it is necessary to avoid hard stones so as to avoid 
irreversible damage to the probe. 

After the in-situ VIS-NIR acquisition, each soil sample was 
immediately put in two aluminum boxes which were used for the 
determination of SSMC and SSC respectively.  And sealed with 
one sampling bag to avoid evaporation of soil moisture, labeled and 
transported to the lab (up to a depth <10 cm). 
2.3  SSMC and SSC (Soil Salt Content) Data Acquisition and 
Pre-Processing 

We recorded the number and weight of an aluminum box for 
each soil sample.  Then we put the uncovered aluminum boxes 
into the drying box and measured the SSMC by the drying method 
under the constant temperature of 105°C in a continuous period of 
24 hours.  The formula of SSMC is 

1 2

2 3
SSMC 100%M M

M M
−

= ×
−

             (1) 
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where, M1, M2 and M3 stand for is the weights of wet soil sample 
(containing aluminum box), dry soil sample (containing aluminum 
box) and empty aluminum box, respectively. 

In order to acquire SSC data, another group of the same soil 
samples were air-dried and the impurities were removed.  The 
conductivity of soil solution (EC1:5, dS/m) was determined with a 
conductivity meter (DDS-307A, Shanghai Youke Instrument 
Company) equipped with the composite electrode (DJS-1C and 
T-818-B-6) in a 1:5 soil-water extraction solution at room 
temperature (25°C).  Then the SSC (%) was calculated by the 
following empirical formula[40]:  

SSC = (0.2882EC1:5 + 0.0183)             (2) 
where, EC1:5 is the conductivity of 1:5 soil-water extraction solution. 

The edge wavelengths (350-399 nm and 2401-2500 nm) of 
higher noise in the original spectra were first removed, and the 
original spectral data were narrowed to 400-2400 nm.  Then the 
smoothing Savitzky-Golay (5 filter widths and second-order 
polynomial) was used to reduce such effects as the instrument noise 
and external environment in spectral data collection.  The 
spectrum is resampled at 10 nm intervals to reduce the complexity 
of the spectral matrix.  Therefore, a total of 201 wavebands 
(400-2400 nm) were acquired for the subsequent analysis. 
2.4  Fractional Order Derivative (FOD) 

FOD is a branch of mathematical theory that extends the 
classical integer-order differential to any order differential.  There 
are three main types of FOD algorithm: Grünwald–Letnikov (G-L), 
Riemann–Liouville and Caputo.  G-L is a discrete form of 
definition, which is convenient for numerical calculations and 
highly computationally efficient, so this formula was adopted in 
this study.  The formula of G-L is 

0

1 ( 1)( ) lim ( 1) ( )
! ( 1)
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h

m
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m
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where, q is the differential order; h is the differential step size; t and 
a are the upper and lower limits of the differential, respectively.  
The formula contains the gamma function: 

1

0
( ) ( 1)!te t dtββ β

∞ − −Γ = = −∫             (4) 

If f(λ) is a one-dimensional spectrum and [a, t] is its wavelength 
interval (λ∈[a, t]),  the wavelength interval is equally divided into 

n portions by the unit h.  Given h=1, ( )t an t a
h
−

= = − .  Then 

the formula of the FOD is derived from equation (3) as follows: 
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where, v is the differential order; When v = 1 or 2, equation (5) is 
the same as the first and second order differential equation.  But 
when v = 0, the spectral data are not processed.  In this paper, 
equation (5) was used to calculate the 0~2 differential of soil 
spectrum (with an interval of 0.25 order).  This process was 
realized by MATLAB R2018a (The Math Works Inc.: Natick, MA, 
USA). 
2.5  Spectral Variable Selection Algorithms 

The effect of the model was the accuracy of the prediction.  
Overly complex models may lead to overfitting.  Overfitting 
models often perform poorly on the validation set.  So we needed 
to make the variables a little less, made the model simpler, and 

sacrificed the accuracy of some models on the calibration set.  On 
the contrary, it may improve the performance of the model on the 
validation set.  So, three spectral variable selection algorithms 
were used to extract sensitive informative spectral variables, 
including VIP, CARS and RFA.  

VIP is a variable selection method based on partial least 
squares regression (PLSR).  VIP selects variables by integrating 
the importance, which is reflected by the weight of each component 
in the PLSR model[32].  This method can obviously reflect the 
importance of each band in the interpretation of dependent 
variables.  The formula is as follows: 

2

1

1

[ ( / || ||) ]
VIP

m

h hj h
h

j m

h
h

p SS W W
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=

=

=
∑

∑
            (6) 

where, VIPj is a measure of the contribution of the jth independent 
variable; p is the number of independent variables; m is the number 
of ingredients extracted on the basis of PLSR; SSh represents the 
sum of the squares explained by the hth component (h=1,2,3…,m); 
(Whj/||Wh||)2 indicates the importance of the jth variable.  Its 
threshold value is 1, and the higher the VIP value, the stronger the 
effect on the interpretation of dependent variables.  The sorting of 
independent variables was realized according to the explanatory 
power. 

CARS is a promising variable selection method proposed by Li 
et al[41].  This method mimics the “survival of the fittest” principle 
in Darwin's biological evolution theory, and selects the effective 
band variables by adaptive reweighted sampling (APS) and 
exponentially decreasing function (EDP).  In the actual variable 
selection, we can obtain multiple valid variable subsets by selecting 
variables with relatively large absolute values of PLSR coefficients 
and eliminating variables with relatively small absolute values of 
regression coefficients.  Then cross-validation method is used to 
model, calculate and compare the root-mean-square error of 
cross-validation (RMSECV).  The subset of variables with the 
smallest RMSECV is the subset of optimal variables.  This method, 
capable of selecting wavelength variables that are sensitive to soil 
properties, and overcoming the combinatorial explosion when 
variables are being selected, is suitable for high-dimensional data.  
The specific details of the algorithm were given by Vohland et al 
and LI et al[23,41]. 

RFA is a relatively new variable selection algorithm proposed 
by Li et al[35].  This method is a Reversible Jump Markov Chain 
Monte Carlo (RJMCMC) variable selection method based on 
Bayesian inference[34].  Its feature is that it can use a small number 
of variables for iterative modeling, which is a very effective 
method for selecting high-dimensional variables.  The main 
working principle of this algorithm is: (1) construct a Monte Carlo 
chain in the model space with each model as a node; (2) obtain the 
posterior distribution of the model from the convergence of the 
chain; and (3) calculate the variable selection probability by 
sampling this distribution, which can guide the variable selection.  
Specific details of this algorithm can be found in Li et al and Hu et 
al[35,36].  The key parameters of this algorithm in our study are 
described below: N (the number of iterations) = 10000; Q (initial 
number of variable to sample) = 2; A (The maximal number of 
latent variables for cross-validation) = 10.) The procedure of VIP, 
CARS, RFA were carried out in MATLAB R2018a with lib PLS 
toolbox[42]. 
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2.6  Model Calibration and Validation 
We divided the samples by the concentration gradient.  First, 

162 soil samples were sorted in ascending order according to the 
SSMC.  Then all the samples were divided into 53 levels, and 
each level had about 3 samples.  Finally, one sample was selected 
in each level as the validation dataset (with a total of 53 soil 
samples, the second samples of each of the 53 levels were selected).  
The remaining samples were used as calibration dataset. 

The ELM is a model that can be easily used for classification 
and regression.  This model proposed by Huang et al is based on 
the single hidden layer feedforward neural network (SLFN)[43].  
Compared with the traditional neural network learning algorithm 
(such as backpropagation neural network), the training process of 
the ELM has the advantages of high training speed and good 
generalization ability[21].  In addition, when ELM is used to train 
the data set, the algorithm can generate an obvious optimal solution 
without adjusting the input weight of the network and the deviation 
of the hidden nodes.  We only need to choose the appropriate 
activation function and determine the number of neurons in the 
hidden layer.  In this study, the activation function used in the 
ELM model is the tan-sigmoid function.  The method of 
determining the number of the optimal hidden layer nodes was 
regulated by varying the nodes from 2 to 100 with an increment of 
2 at each step[44].  We used the ELM package to conduct the 
algorithm in R3.5.2 software. 

The model accuracy is evaluated by R2, RMSE, and ratio of the 
performance to deviation (RPD).  The model is divided into six 
levels based on the value of the RPD: RPD < 1.0 (unsuccessful 
prediction/model); 1 ≤ RPD < 1.4 (poor prediction/model); 1.4 ≤ 

RPD < 1.8 (fair prediction/model); 1.8 ≤ RPD < 2 (good 
prediction/model); 2 ≤ RPD ≤ 2.5 (very good, quantitative 
prediction/model); 2.5 ≤ RPD (excellent prediction/model)[45] ; In 
summary, the best model has the largest R2 (close to 1) and RPD, 
as well as the smallest RMSE value. 

3  Results 

3.1  SSMC, SSC and VIS–NIR Spectra 
Statistical distribution of measured SSMC for the whole, 

calibration and validation datasets is shown in Figure 2a.  The 
SSMC of the study area varied widely between 0.92% and 37.13%, 
with an average SSMC of 22.66%, standard deviation of 6.29%, 
and a high coefficient of variation of 360.25%.  Compared with 
the range of the SSMC (0.92%-37.19%) for the calibration dataset, 
the validation dataset had a similar range of 3%-37.08% with mean 
and standard deviation of 22.55% and 6.21%, respectively.  
During the sampling period, the SSMC in the SIA was 
concentrated around 22%, the SSC in SIA was mainly concentrated 
in 0-0.75%.  The distribution of the SSMC and SSC in each point 
was shown in Figure 2b, and points were mainly concentrated in 
the area when 0%<SSC<1% and 15%<SSMC<30% in Figure 2b.  
The distribution of SSMC and SSC in different conditions might 
have some effect on the SSMC prediction.  The results showed 
that the distribution of the SSMC of all the datasets was basically 
the standardized normal distribution.  The statistical results of 
SSMC in both calibration and validation dataset were similar to 
those of the whole dataset.  Therefore, the SSMC of both datasets 
can adequately represent the entire dataset. 

 

 
a. Box-plots to distribution of SSMC for the whole, calibration, and validation datasets  b. Scatter plot to describe the moisture and salt content of 

soil samples 
 

Figure 2  Box-plots, scatter plot and distribution statistics of SSMC and SSC (S.D.: standard deviation) 
 

For convenient analysis of the effects of different factors on 
the in-situ soil spectrum, we selected representative spectra from 
the measured spectra.  Figure 4 shows the original spectral 
reflectance of different SSMC under the same SSC and the original 
spectral reflectance of different SSC under the same SSMC.  In 
the vicinity of 1450 nm, 1950 nm and 2200 nm bands, different 
SSC spectra and different SSMC spectra showed obvious 
absorption characteristics (Figure 3).  With the same SSMC, the 
spectral reflectance increased with the increase of SSC.  However, 
the bands near 1950 nm were mainly affected by the SSMC, and 
the spectral reflectance change was not obvious (Figure 3b).  
When the SSC was the same, the spectral reflectance increased 
with the increase of SSMC, but the soil spectral reflectance 

decreased after the SSMC reached 22.3% (Figure 3a).  It can be 
seen from the above description that the salinized soil spectrum is 
affected by both SSMC and SCC.  Therefore, when the spectrum 
is used to predict the SSMC, the difference of SSC will inevitably 
affect the prediction effect. 
3.2  FOD Spectra 

In this study, the FOD (order = 0~2; interval = 0.25 steps) of  
the in-situ soil spectra were calculated using formula (5).  The 
pretreated spectra are shown in Figure 4 When the order increased 
from 0 to 1, the negative peaks at 425 nm, 498 nm and 2340 nm 
increased, which might be affected by SSC (Figure 4a-e).  After 
the fractional order derivative treatment, the vibration of water 
molecules became gradually prominent, and the absorption valleys 
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at 1400 nm, 1900 nm and 2200 nm became more obvious, which 
proved that the overlapping peaks were eliminated[9].  It is 
generally considered that the absorption band is a composition of 
hydroxyl (-OH) band, H2O band, hydroxyl stretching and bending 
vibrations of Al-OH and Mg-OH[46].  As the order increased from 
1 to 2, the positive peaks at 2250 nm and 2300 nm were gradually 
highlighted, while the absorption valleys at 2200 nm and 2340 nm 

were attenuated (Figure 4f-i).  The 2340 nm is mainly related to 
soil salinity, and 2250 nm may be related to other properties of the 
soil.  As the 0-2 order FOD changes, most of the reflectance 
values gradually approached zero, demonstrating that the baseline 
drift was eliminated.  In general, the FOD highlights not only the 
curve features but also other interference characteristics, so the 
appropriate band selection algorithm is especially important. 

 
a. SSMC is around 20%  b. SSC is around 0.3% 

 

Figure 3  Spectral reflectance curves under different conditions 

 
a. Original reflectance (order=0) b. 0.25-order c. 0.5-order 

 

 
d. 0.75-order e.1-order f.1.25-order 

 

 
g. 1.5-order h. 1.75-order i. 2-order 

 

Figure 4  Mean FOD spectra of soil samples (n = 162).  The yellow shaded areas represent the standard deviations of the spectra 
 

3.3  Spectral Variables Selection by VIP, CARS and RFA 
VIP analysis of the SSMC and different FOD spectra was 

conducted, and the VIP score curves are shown in Figure 5.  As is 

indicated, as the order increased, the VIP scores in the band around 
1400, 1900 nm gradually increased, but decreased slightly after 
1.25 order.  In order to achieve the band selection, we judged the 
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explanatory power of the independent variable over the dependent 
variable according to the “VIP>1” criterion, and recorded the VIP 
selection results of SSMC and FOD (Figure 6).  When the 
derivative order was below 1, the number of selected spectral 
variables was relatively large, but when the derivative order was 
over 1, the number of selected spectral variables was relatively 

small.  The selected variables were mainly concentrated near the 
bands that are more sensitive to SSMC (1400, 1900, 2200 nm).  In 
all FOD transformations, some related wavelengths were always 
selected, including 1390, 1420, and 1860, 1870, 1880, 1890, 1900, 
1910, 1920, 1950 nm. 

 
a. Raw reflectance (0-order) b. 0.25-order c. 0.5-order 

 
d. 0.75-order e.1-order f.1.25-order 

 
g. 1.5-order h. 1.75-order i. 2-order 

 

Figure 5  Plots of VIP Scores 
 

 
Figure 6  The distributions of spectral variables selected by VIP 

algorithm at different derivative orders 
 

The following is the illustration of the CARS selection by an 
example of the 0.75-order FOD spectrum (Figure 7).  As is shown 
in Figure 7, as the number of sampling runs increased, the number 

of sampling spectral variables decreased, displaying a trend of 
fast-to-slow decrease (Figure 7a).  Figure 8b shows the change of 
the RMSEcv value with the increase of the number of sampling runs.  
When the number of sampling runs was 38, the RMSEcv value was 
the smallest.  When the number of sampling runs is less than 38 or 
more than 38, it means that the variables that fail to provide 
information and the variables that have lost their information are 
both removed.  Figure 7c shows the variation of the regression 
coefficient path for each variable during the sampling process.  As 
can be seen from both Figures 7b and 7c, the optimal subset of the 
CARS method selection corresponded to the region with the lowest 
RMSEcv value, which was marked with a vertical asterisk line.  
We retained the six selected spectral variables as the subset with 
the most information, and the number of these variables was only 
2.99% of the full spectrum.  The spectral variables ultimately 
selected for all FOD transformations are shown in Figure 8.  The 
selected variables were basically concentrated around 1400 and 
1900 nm, and the number of variables was very small.  
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a. The number of sampled variables b. 5-fold RMSEcv values 

 

 
c. Regression coefficient 

Figure 7  CARS variable selection of 0.75-order FOD spectra 
 

 
Figure 8  The distribution of spectral variables selected by CARS 

algorithm at different derivative orders 
 

For the RFA, the number of optimal iterations was selected 
according to the RMSEcv value.  Then the optimal number of 

spectral variables was determined by the number of optimal 
iterations.  Finally, the selected bands were determined according 
to the order of the variable selection probability.  Take the 
0.75-order derivative spectrum as an example (Figure 9).  As 
Figure 9a shows, as the number of iterations increased, the number 
of selected spectral variables changed.  The curve showed an 
oscillation with no obvious regularity.  Figure 9b shows the 
change in the RMSEcv (root mean square error during RFA 
operation) value as the number of iterations increased.  It can be 
seen from Figure 9b that the RMSEcv reached a minimum when the 
number of iterations was 2062.  Figure 9a shows that when 
RMSEcv reached a minimum, the number of selected optimal 
variables was 51.  As is shown in Figures 9a and 9c, the sequence 
of the band selection probabilities ultimately determined the 
selected variables.  The selected spectral variables accounted for 
25.37% of the full spectrum.  The spectral variables ultimately 
selected for all FOD transformations are shown in Figure 10. 

 
a. The number of variables   

 
b. RMSEcv values   

 
c. Selection probability 

Figure 9  Random forg algorithm (RFA) variable selection of 0.75-order derivative spectra 
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Figure 10  The distribution of spectral variables selected by RFA 

at different derivative orders 
 

3.4  Comparison of Predictions Using Different FOD 
Transformations and Variable Selection Algorithms 

SSMC estimation model based on ELM was established for 
different FOD, and a series of calculation results are shown in 
Table 1.  These nine ELM models demonstrated different 
modeling results.  Except the three models (order = 1.5, 1.75, and 
2), all other FOD transformations have improved the accuracy of 
the models, compared to the original reflectance (order = 0).  This 
may be due to the ability of these methods to reduce the adverse 
effects (such as baseline effects) so as to improve model 
performance.  However, when the order = 1.5, 1.75, and 2, the 
FOD would amplify the interference information, resulting in a 
decrease in the model accuracy and robustness.  The most 
accurate model is the ELM based on the 0.75-order FOD spectrum 
(Rv

2
 = 0.83, RMSEv = 2.87%, RPD = 2.44), followed by the 0.5-order 

FOD spectrum.  For the first and the second derivative spectrums, 
their RPD values were reduced by 0.28 and 1.07, compared with 
the 0.75-order FOD spectrum.  It can be seen that most of the 
FOD can improve the model performance, compared with the 
original spectrum (order = 0) and the integer derivative spectrum 
(i.e. the first and second order derivative). 

 

Table 1  Modeling results of full-spectrum ELM models for 
SSMC with different FOD preprocessing techniques 

Calibration dataset (n=109) Validation dataset (n=53) 
Order Na 

Rc
2 RMSEc /% Rv

2 RMSEv /% RPD

0 201 0.69 3.52 0.71 3.36 1.84

0.25 201 0.81 2.76 0.73 3.19 1.95

0.5 201 0.84 2.55 0.82 2.61 2.38

0.75 201 0.88 2.22 0.83 2.54 2.44

1 201 0.84 2.54 0.78 2.87 2.16

1.25 201 0.78 2.96 0.75 3.10 2.00

1.5 201 0.82 2.69 0.69 3.44 1.81

1.75 201 0.73 3.29 0.57 4.11 1.51

2 201 0.72 3.36 0.46 4.54 1.37
Note: a Number of the spectral variables. 

 

In order to study the influence of FOD and variable selection 
algorithms on SSMC estimation, the ELM method was used to 
establish spectral models on the same calibration and verification 
datasets (but different spectral wavelengths were selected).  The 
model accuracy was evaluated by R2, RMSE, and RPD.  The 
descriptive regression statistics is shown in Table 2.  The 
cross-validation results of the model indicated that in the spectral 
variables selection, the simplified model showed better 
performance and higher Rc

2 values (from 0.74 to 0.96) and lower 

RMSEc values (from 1.22% to 3.18%) than the corresponding 
full-spectrum ELM model (Table 1).  In addition, the number of 
selected spectral variables was greatly reduced (variable ratios 
range from 1.49% to 62.18%), and the selected spectral variables 
contained the most useful information related to the SSMC.  In 
general, RFA selects more spectral variables than VIP and CARS.  
These results showed that the variable selection could help simplify 
the model structure and improve its prediction accuracy. 

 

Table 2  Modeling results of VIP-ELM, CARS-ELM and 
RFA-ELM for SSMC with different derivative order 

preprocessing techniques 

Calibration dataset 
(n=109) 

Validation dataset 
(n=53) 

Selection Order Ta Nb

Rc
2 RMSEc 

/% Rv
2 RMSEv 

/% RPD

0 0.0058 125 0.85 2.47 0.82 2.61 2.37

0.25 0.0057 108 0.87 2.29 0.84 2.45 2.53

0.5 0.0061 65 0.91 1.91 0.88 2.17 2.85

0.75 0.0063 45 0.90 2.05 0.88 2.17 2.86

1 0.0065 33 0.87 2.27 0.86 2.28 2.72

1.25 0.0076 30 0.86 2.35 0.81 2.67 2.53

1.5 0.0065 25 0.84 2.51 0.81 2.68 2.32

1.75 0.0053 19 0.83 2.57 0.81 2.73 2.27

VIP 

2 0.0054 12 0.82 2.64 0.77 2.92 2.12

0 0.33 5 0.78 2.96 0.74 3.12 1.99

0.25 0.27 6 0.81 2.75 0.77 2.89 2.14

0.5 0.28 3 0.86 2.32 0.83 2.51 2.47

0.75 0.28 6 0.88 2.15 0.88 2.18 2.85

1 0.29 14 0.89 2.12 0.89 2.01 3.09

1.25 0.29 8 0.85 2.41 0.86 2.29 2.71

1.5 0.30 7 0.82 2.68 0.81 2.69 2.31

1.75 0.31 9 0.81 2.74 0.80 2.71 2.29

CARS

2 0.31 17 0.78 2.94 0.77 2.95 2.10

0 59.35 20 0.87 2.29 0.83 2.49 2.49

0.25 57.04 24 0.89 2.09 0.87 2.27 2.74

0.5 74.82 39 0.89 2.05 0.89 2.06 3.02

0.75 84.07 51 0.96 1.22 0.94 1.63 3.80

1 110.91 53 0.94 1.52 0.91 1.82 3.42

1.25 122.36 56 0.91 1.89 0.86 2.28 2.72

1.5 125.12 63 0.85 2.48 0.86 2.34 2.65

1.75 106.45 61 0.82 2.71 0.76 3.00 2.07

RFA 

2 94.81 52 0.81 2.77 0.75 3.06 2.03

Note: a Computation time (seconds) in the processes of variable selection;      
b Number of the selected spectral variables. 

 

In the VIP method, the ELM model based on the 0.75-order 
derivative spectrum has the highest prediction accuracy for SSMC 
(Rv

2
 = 0.88, RMSEv = 2.17%, RPD = 2.86).  The simulation results 

showed the 0.75-VIP-ELM model had a good prediction 
performance (Figure 13).  Similarly, the ELM models based on 
the first derivative spectrum and the 0.75 order derivative spectrum 
had the most accurate estimation of SSMC in the CARS and the 
RFA methods, respectively.  It is worth noting that the VIP, 
CARS, and RFA methods have a positive effect on building a more 
accurate and concise ELM model than the full-spectrum ELM 
model (Table 1).  Figure 11 shows the scatter plots of measured 
SSMC and predicted SSMC by different variable selection 
algorithms.  We can see from Figure 11d that the 0.75-order FOD 
spectrum combined with RFA could make the scatter of the 
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measured and the predicted SSMC values closer to the 1:1 line.  
However, the points of the measured and the predicted SSMC 
values based on the 0.75-order FOD full spectrum were 
significantly more scattered and the fit line was more deviant from 
the 1:1 line (Figure 11a).  The comparison of the RPD average 
conversion of different FOD (Figure 12a) demonstrated that the 

ELM models based on the 0.75-order FOD spectrum had the best 
performance in all the FOD transformations.  Their average RPD 
is 2.65, displaying a good pretreatment effect in SSMC prediction.  
The mean RPD of each variable selection algorithm is shown in 
Figure 12b.  The results showed that RFA had the best 
performance, and VIP and CARS followed. 

 
Figure 11  Scatter plots of measured SSMC and predicted SSMC by different variable selection algorithms.   

The color of the scatter points indicates the degree of salinization.  The black lines denote as the 1:1 line 

 
a. FOD  b. Variable selection algorithms 

 

Figure 12  The mean and 95% confidence interval of the RPD values of SSMC prediction 
 

The optimal model is usually a model with the best predictive 
power and the highest accuracy.  However, the choice of the 
variable selection algorithm is a compromise between predictive 
performance and computation time.  The time of each variable 
selection algorithm was calculated in MATLAB R2018a and these 
algorithms were further compared (Table 2).  All the processing 
was conducted in the same computer (Intel Core i7 2.50 GHz 
Processor, 16GB of RAM, Windows 10).  In all FOD 

transformations, the VIP was completed in 0.01 second, and the 
CARS in 1 second, but the RFA always over 50 seconds.  In the 
case of considering more efficiency, VIP was the most suitable 
method, although its predictive accuracy was lower than RFA, but 
similar to CARS (Figure 13).  In the case of considering more 
precision, RFA was the most suitable method, although its 
effectiveness was lower than VIP and CARS, but its predictive 
accuracy was best (Figure 13). 
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3.5  Digital mapping 
We applied the models using the full-band and different 

variable selection methods to all sampling points in the study area, 
and predicted the moisture content of each sample point.  The 
distribution diagrams of the measured, predicted and residual 
SSMC were plotted using the inverse distance weighted method of 
ARCGIS 10.5, as is shown in Figure 13.  The spatial distribution 
of the predicted SSMC showed that the north was higher than the 
south and the west was higher than the east, which was consistent 
across all tested models (Figure 13b1-b4)).  All the tested models 
showed a similar pattern of residual spatial distribution.  
Specifically, all the models underestimated the SSMC in the 
northwest, and the degree of underestimation was 
0.75-FULL-ELM>1-CARS-ELM≈0.75-VIP-ELM>0.75-RFA-ELM.  

For other areas, the water content was overestimated to varying 
degrees, and the degree of overestimation was 0.75-FULL-ELM> 
1-CARS-ELM≈ 0.75-VIP-ELM> 0.75-RFA-ELM.  The degree 
of similarity between the predicted map and the measured map 
was 0.75-RFA-ELM> 1-CARS-ELM≈ 0.75-VIP-ELM> 
0.75-FULL-ELM.  In summary, the ranking of model 
performance in spatial distribution was 0.75-RFA-ELM> 
1-CARS-ELM≈0.75-VIP-ELM>0.75-FULL-ELM.  These results 
confirmed that the 0.75-RFA-ELM model displayed a good 
performance in space simulation.  According to the results in this 
part and that in Section 3.5, we recommend 0.75-VIP-ELM or 
0.75-RFA-ELM with appropriate reductions in the number of 
iterations (i.e., reduced program run time) be used in the SSMC 
estimation. 

 
Figure 13  Spatial distribution diagrams of (a) the measured SSMC; The predicted SSMC: (b1) 0.75 order derivative full-spectrum ELM 
(0.75-FULL-ELM), (b2) 0.75 order derivative VIP ELM (0.75-VIP-ELM); (b3) 1 order derivative CARS ELM (1-CARS-ELM);(b4) 0.75 

order derivative RFA ELM (0.75-RFA-ELM); Residuals: (c1) 0.75-FULL -ELM, (c2) 0.75-VIP-ELM; (c3)1-CARS-ELM; 
(c4)0.75-RFA-ELM (White and black are the overestimation and underestimation of SSMC, respectively) 

 

4  Discussion 

Although the VIS-NIR spectroscopy for SSMC prediction in 
laboratory has been relatively mature, there is very rare in-situ 
research.  If in-situ soil spectroscopy can be applied to SSMC 
estimation, much time and labor will be saved.  Our results 
indicated that both SSC and SSMC affected the soil spectrum, so 
the VIS-NIR moisture detection in saline soils is somewhat 
different from non-saline soils (Figure 3).  This is consistent with 
other studies: the spectral reflectance of most of the bands rises as 
the soil salinity increases; the soil salinity even changes the effect 
of soil moisture on the spectrum.  This is mainly because when 
the soil salinity is high, on the surface of the soil will form a salt 
shell, which is mainly white (Figure 1C, 1D, 1E).  The white 
substance has strong reflection performance, which can enhance 
the reflection ability of the soil, thereby greatly increasing the 
reflectivity of some bands[8].  In addition, when acquiring in-situ 
spectra, such external factors as soil surface conditions, soil texture, 

and so on also affect the spectral characteristics[10,47].  Although 
the SSC and the external factors have some negative effect on the 
in-situ soil spectroscopy, the combination of different variable 
selection algorisms in this study with the ELM algorithm displayed 
excellent predictive performance (best validation R2=0.94, 
RPD=3.80).  Overall, our results indicated that the in-situ 
spectroscopy had great potential for SSMC estimation, and the 
highest model accuracy is slightly higher than the research reports.  
Oltra-Carrió et al. used the spectral indices to invert the SSMC 
under different soil clay content, and its R2 was up to 0.91[48]; 
Wang et al. applied salt-resistant indices to modeling, and used 
field data to verify the accuracy (R2 was up to 0.72)[8]; The study by 
Cai et al.  in north central Tarim Basin in Xinjiang showed that 
ELM could achieve the best performance in SSMC prediction, and 
verified that R2 could reach up to 0.9354[22]. 

In the spectral analysis, the first-order differential can 
eliminate the effect of the partially linear or near-linear noise 
spectrum and the background on the target spectrum, and improve 
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the overlapping spectral resolution; the second-order differential 
can eliminate baseline drift and background signal, and improve the 
analysis accuracy[49].  The FOD is an extension of the integer 
differential, extending the order from an integer to a non-integer.  
Usually, the first-order differential of the spectral curve is defined 
as the slope of the spectral line, and the second-order differential is 
defined as the curvature of the spectral line, corresponding to the 
inflection point and the extreme value, respectively.  However, the 
fractional order can be considered as the sensitivity to the slope and 
curvature of the line.  That is, when the fractional order increases 
from 0 to 1, the sensitivity of the fractional result to the spectral 
reflectance decreases, and the sensitivity to the slope of the line is 
increased; When the order increases from 1 to 2, the sensitivity of 
the fractional result to the slope of the line decreases, and the 
sensitivity to the curvature of the line increases.  Thus, similar to 
the integer order derivative, FOD can also eliminate oblique 
baselines, but its ability to eliminate baselines of different 
curvatures proves to be superior to integer order 
derivatives[14,15,17,50].  In all full-spectrum ELM models (Table 1), 
the ELM model based on the 0.75-order derivative spectrum has 
the highest accuracy (RPD=2.44).  Compared with the first 
derivative spectrum, the second derivative spectrum and the 
original spectral reflectance, the RPD is increased by 0.28, 1.07 and 
0.60, respectively. 

The VIS-NIR spectrum often contains redundant wavelength 
information, increasing the complexity of the model[23,25-28].  It 
can be seen that the SSMC model based on spectral variable 
selection, regardless of the FOD transformation, has better 
performance than the full-spectrum ELM model (Table 2).  The 
RPD of the optimal model in the variable selection is 3.80, while 
for the full-spectrum ELM model based on the 0-order derivative 
spectrum (i.e. no differential processing), the RPD is only 1.52.  
The optimization model can eliminate unnecessary spectral 
variables and reduce over-fitting or under-fitting, which means that 
variable selection can simplify the model structure and improve the 
model robustness[51]. 

Among the three spectral variable selection methods used in 
this study, RFA showed the best prediction performance in all FOD 
transformations (Figure 13).  These models, whose RPD values 
ranged from 2.03 to 3.80, were classified as models with very good 
predictions to excellent predictions.  Compared with RFA, the 
results of VIP were relatively poor, and those of CARS were the 
worst (Figure 12b, considering only the mean).  Nevertheless, 
RFA took the longest computation time (average = 92.77s), and the 
complete iteration of possible combinations of variables was also 
complicated[35,36].  In order to improve the calculation accuracy 
and efficiency, VIP method is suggested to replace RFA method or 
to reduce the number of iterations of RFA when the quality of 
variable selection is guaranteed.  At present, many studies have 
proved that VIP is a useful tool for spectral variables selection.  
For example, Wang et al. found that the spectral variables selected 
by VIP could be used to establish a more accurate model of soil 
water-soluble salt ions[30].  Guezenoc et al discovered that the 
combination of VIP and coefficient maps was beneficial to 
obtaining quality variables of soil potassium[52]; Jia et al. found that 
combination of VIP with recursive partial least squares regression 
could predict soil organic carbon and nitrogen steadily[53].  In this 
study, the application of CARS did not produce satisfying results 
(Table 2 and Figure 12).  Although the number of variables was 
greatly reduced and the validation model was simplified, the 
average effect of CARS was not as good as VIP (Figure 12).  

However, many studies have shown that CARS is an excellent 
variable selection method.  For example, Vohland et al. found that 
the CARS method could effectively select the key informative 
spectral variables in the spectral inversion of soil organic matter 
and other properties[54]; Xu et al. found that CARS in combination 
with support vector machine regression could predict rice root 
density relatively accurately[31].  The relatively poor performance 
of CARS in this study is probably because the variables selected by 
CARS may also include some unstable or disturbance variables.  
The direct evidence is that, among the three variable selection 
methods, the number of variables selected by CARS (no more than 
17, accounting for less than 8.45% of the total band) was the 
smallest (Table 2).  

Compared with the other two variable selection algorithms, 
RFA was more successful in the selection of soil spectral variables.  
From our research as well as Yao’s, we found that RFA could be 
used to select more effective spectral variables to predict the soil 
properties[55].  However, the number of iterations in RFA had a 
great effect on the calculation time.  Although a larger number of 
iteration means more effective variables obtained, it is necessary to 
balance the contradiction between the number of iterations and the 
calculation time.  In all the FODs, the bands selected by RFA 
were relatively dispersed compared with that by VIP and CARS, 
but, with the three algorithms, bands could always be selected near 
1400 and 1900 nm.  This is consistent with previous conclusions, 
because these two bands are mainly for water absorption[56].  The 
relative dispersion of the bands selected by RFA may be related to 
the effect of soil salinity[35,36,55,57].  Namely, the soil contains high 
moisture salts, such as MgCl2 and CaCl2, which absorb some 
water[58].  Consequently, some spectral information of SSMC 
exists in SSC-sensitive spectral bands.  However, we should pay 
attention to the fact that the result of variable selection method 
varies according to the material and sample characteristics to be 
studied. 

ELM algorithm has been widely used to solve complex 
regression or non-linear problems[21,43,44].  In recent years, 
Khosravi et al compared the multivariate prediction methods and 
studied their effects on the prediction of heavy metals in soils[21].  
The results showed that ELM had the best performance in 
estimating such heavy metals as Zn and Pb among the four 
commonly used multivariate regressions.  Our research further 
supports their findings.  Previous studies have shown that soil 
moisture has a non-linear effect on reflectance spectra[20,21,43,44,59].  
Variable selection will inevitably reduce the spectral variables 
involved in modeling, but these processes can’t change the 
non-linear relationship between the SSMC and the reflectance 
spectra[9].  Therefore, the application of ELM model in this study 
can well solve these complex non-linear regression problems. 

The cultivated land soil in this study area is mostly clay 
loam[37].  Therefore, the measured soil spectra have similar 
spectral characteristics, which provide a basis for the establishment 
of SSMC prediction model.  Although the prediction of SSMC in 
this study is more accurate, all the estimation models are based on 
in-situ point spectra, which can’t be directly applied to surface 
spectral data (i.e., spectral images).  However, the combination of 
the spectral pretreatment and variable selection models reported in 
this paper is a promising start.  We intend to validate these 
methods using different data sets including different soil types, soil 
texture and salinized areas in future studies in order to provide a 
reference for precise and rapid determination of SSMC by satellite 
or UAV. 
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5  Conclusions 

This study investigated the effectiveness of FOD and spectral 
variable selection methods in SSMC estimation.  The main 
conclusions are: 

(1) The spectrum of salinized soil is affected by SSMC and 
SSC, but the effect of SSC can be weakened by the selection of 
effective bands. 

(2) In some cases, FOD (e.g. 0.5 and 0.75 orders) can have 
better estimation than the integer order derivatives (i.e., 1st and 2nd 
orders) and the original reflection spectrum. 

(3) The ELM model based on the 0.75 order derivative 
spectrum and the random frog algorithm provides an optimal model 
prediction.  Our study confirmed the potential of in-situ VIS-NIR 
spectroscopy for SSMC estimation. 

(4) The good applicability of the random frog algorithm in soil 
spectroscopy was further confirmed in this study. 

(5) Variable selection algorithms (i.e., VIP, CARS, and RFA) 
are capable of selecting useful spectral variables, simplifying the 
model, and improving the prediction accuracy.  In general, RFA 
has the best prediction but a long calculation time.  An alternative 
approach is the application of the VIP method due to its less 
required time to process the algorithm with a relatively high 
precision. 
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