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Abstract: The rapid, nondestructive, and accurate estimation of nitrogen content in rice can help to obtain the growth condition 
of rice in time, which is of great significance for guiding rice field management.  In order to improve the accuracy of 
high-spectral inversion of rice canopy nitrogen content, the discrete wavelet multiscale decomposition (DWMD) was used to 
downscale the high-spectral information in the range of 400 nm to 1000 nm by using the UAV hyperspectral image data and the 
synchronously measured rice canopy nitrogen content as the data source, from which the hyperspectral characteristic variables 
for rice nitrogen content inversion modeling were extracted.  And using the dimensionality reduction variables as the data base, 
three neural network inversion methods, including extreme learning machines (ELM), particle swarm optimization for extreme 
learning machines (PSO-ELM), and beetle antennae search algorithm for extreme learning machines (BAS-ELM), were used to 
establish the rice nitrogen content drone hyperspectral remote sensing inversion model, and the results showed that: (1) The 
hyperspectral range from 400 nm to 1000 nm was dimensionally reduced by DWMD, and finally the continuous hyperspectral 
reflectance information was dimensionally reduced to sixteen discrete hyperspectral features for subsequent inversion 
modelling of rice nitrogen content.(2) In the model adopted in this study, BAS-ELM has the highest accuracy, where the R2 of 
training data, the R2 of test data, the RMSE of training data, and the RMSE of test data is were 0.864, 0.863, 0.247, 0.254. 
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1  Introduction  

Rice is one of the most important food crops in the world, and 
rice production is of great significance to food security of the 
world[1].  To increase rice yield, the managers should apply 
chemical fertilizers during rice production[2,3].  The application of 
nitrogen fertilizer is a key factor to ensure the final yield of rice.  
In addition, rice yield is also closely related to photosynthesis[4].  
Relevant studies have shown that rice photosynthesis is related to 
nitrogen, and rice leaf photosynthetic rate is highly correlated with 
nitrogen content, to reach a significant level.  When the nitrogen 
content is scarce during rice growth, the chlorophyll content of the 
leaves will decrease, the content and activity of enzymes related to 
photosynthesis will decrease, and the total leaf area will decrease, 
which will eventually lead to a decrease in dry matter 
accumulation[5]; but Excessive application of nitrogen fertilizer will 
also lead to reduced rice yields and ultimately reduced yields[6,7].  
This will not only increase crop planting costs, but also have 
adverse effects on the ecological environment, such as soil 
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compaction and eutrophication of water bodies[8].  Some studies 
have pointed out that the amount of nitrogen fertilizer used in the 
current rice production management process is too high, which 
exceeds the optimal amount of nitrogen fertilizer required for high 
rice yield, and the phenomenon of excessive application of 
chemical fertilizers is more serious[9-11].  Therefore, the rapid 
detection and evaluation of nitrogen content during rice growth is 
an important prerequisite for precise rice fertilization management 
according to demand. 

At present, the method of rice nitrogen diagnosis is generally 
to take destructive rice field samples and conduct chemical analysis 
of rice tissues indoors.  Although the detection results obtained by 
indoor chemical analysis are more accurate, this method requires a 
lot of human labor and material resources, which is 
time-consuming and has a certain time lag[12].  Therefore, the use 
of UAV hyperspectral technology to diagnose the nitrogen content 
of rice can make up for the shortcomings of the aforementioned 
traditional methods[13].  The UAV low-altitude remote sensing 
platform is a fast-developing near-Earth remote sensing method in 
recent years[14].  Its platform has high flexibility, rich data 
acquisition.  Compared with other remote sensing methods, it has 
certain unique advantages[15].  The remote sensing method of 
UAV hyperspectral remote sensing inversion and estimation of the 
nitrogen content in the rice canopy at the near-earth scale has 
important practical significance for assisting the precise 
fertilization and pesticide application in the field.   

Existing studies have shown that when the nitrogen content of 
rice changes, it will cause changes in the reflectance of different 
wavelengths at the spectral level.  Because hyperspectral 
information has a relatively high data dimension, it is usually 
necessary to reduce the dimension of hyperspectral data first, and 



60   September, 2020                       Int J Precis Agric Aviat      Open Access at https://www.ijpaa.org                        Vol. 3 No. 3 

then establish a quantitative inversion model with rice nitrogen 
content[16].  Relevant researchers have made certain research 
results in using UAV hyperspectral technology to estimate the 
nitrogen content of rice.  He et al.[17] established a vertical 
distribution model of the relative canopy height.  These results 
provide technical support for the rapid, accurate, and 
non-destructive identification of the vertical distribution of nitrogen 
in rice canopies.  Jay et al.[18] exploited the centimeter resolution 
of UAV multispectral imagery to inverse the nitrogen content in 
sugar beet crops.  Zhang et al.[19] studied 12 spectral indices 
combined with partial least square analysis.  This approach was 
applied for estimating chlorophyll content of rice leaves from 
plants subjected to different nitrogen levels, and a root mean square 
error of cross-validation of 0.506, a coefficient of determination of 
97.8% and a ratio of performance to deviation of 4.6 for all rice 
varieties indicated this as a preferable procedure.  This study 
demonstrates that Vis/NIR spectroscopy can have a great potential 
for identification of rice varieties and evaluation of nitrogen 
fertilizer levels.  Camino et al.[20] improved nitrogen retrievals 
with airborne-derived fluorescence and plant traits quantified from 
hyperspectral imagery in the context of precision agriculture.  In 
the work of Stavrakoudis et al.[21], the reflectance values and 
vegetation indices obtained from a compact multispectral sensor 
onboard an unmanned aerial vehicle were used as inputs.  At the 
booting stage, similarly high accuracies were achieved for yield, N 
concentration, N uptake, biomass, and plant height, using inputs 
from either two or three images.  The results of the present study 
can be useful for providing N recommendations for the two 
top-dressing fertilizations in rice cultivation, through a 
cost-efficient workflow.  Masemola et al.[22] analyzed the leaf 
structure interference factors affecting the estimation of leaf 
nitrogen content, and constructed a characteristic wavelength 
selection method with R2 of 0.82 and RMSE of 0.13, besides 
determined typical nitrogen bands of crop leaves , which can 
effectively monitor Nitrogen content of leaves during different 
periods.  Klem et al.[23] studied the special and thermal indices 
which can provide satisfactory estimations of perspective of 
interactions between water and N discount, grain yield, N uptake, 
and mathematical responses.    

At present, in the research of rice nitrogen content retrieval 
from UAV low altitude remote sensing, most of the feature bands 
are selected from multi-dimensional Hyperspectral Information, 
and the statistical regression model between vegetation index and 
rice nitrogen content is established by using the characteristic band 
to build vegetation index[24-26]. This method has ideal retrieval 
effect for specific varieties in specific areas, but the model is still 
insufficient in generality. The previous work of using hyperspectral 
analysis technology to detect nitrogen content mainly focused on 
two aspects: establishing various vegetation indices, using multiple 
linear or non-linear regression method to establish the inversion 
model between the index and nitrogen content; or modeling all 
bands of hyperspectral data of rice canopy by PCA, PLS and other 
methods[27, 28].  

The purpose of this study was to study the inversion of 
nitrogen content in the rice canopy and leaf layer in the cold region 
of Northeast China, so as to solve the problem of rapid, accurate 
and nondestructive diagnosis of nutrition status in rice growth 
process and to improve the accuracy of nitrogen content inversion.   
In order to realize the accurate inversion of rice canopy chlorophyll 
content in the cold region of northeast China, this study used UAV 
hyperspectral remote sensing platform to obtain the hyperspectral 

image data of the key growth period of rice canopy, and  used the 
discrete wavelet multiscale decomposition (DWMD) to 
hyperspectral features extraction for the response of rice nitrogen 
content, then established the limit learning machine inversion 
model based on the improved beetle antennae search algorithm 
(BAS-ELM). 

2  Materials and methods 

2.1  Study area and design 
This study was carried out in the pilot field of precision 

agriculture aviation team of Shenyang agricultural university.   
The pilot place was in Liutiao Village, Shenyang City, Liaoning 
Province (123°63′E, 42°01′N), and the experiment was carried out 
from June to August 2020.  The experimental variety of rice was 
“gengyou653” and the reproductive stages of rice covered in this 
study include rejuvenation, tillering, and pulling stage.  The data 
acquisition activity depended on the weather condition, which 
avoided the rainy and windy circumstances.  The test plot was 
designed as four nitrogen fertilizer gradient treatments (Figure 1), 
namely CK, N1, N2 and N3, with ridges separating the plots.  CK 
was the control group, i.e. no basal fertilizer was applied; N1 was 
the local standard nitrogen basal fertilizer application level of    
45 kg/hm2; N2 was the low nitrogen fertilizer application level of 
22.5 kg/hm2; N3 was the high nitrogen fertilizer application level 
of 67.5 kg/hm2; phosphorus and potassium fertilizer were applied 
according to the local standard application level, of which the 
standard phosphorus application level of 45 kg/hm2 was applied.  
51.75 kg/hm2 and the standard application rate of potash is      
18 kg/hm2.  Other field management is carried out according to 
the normal local level. 

 
Note: CK is the control group; the application rate of N1 is 45 kg·hm-2, that of 
N2 is 22.5 kg·hm-2, and that of N3 is 67.5 kg·hm-2. 

Figure 1  Test site of this study 
 

2.2  UAV hyperspectral remote sensing image acquisition 
The UAV hyperspectral platform adopts the M600 PRO 

six-rotor UAV from DJI Co., Ltd. and the hyperspectral sensor uses 
the GaiaSky-mini that a built-in push-scan airborne hyper-spectral 
imaging system from Sichuan Shuang li Hepu Company (Sichuan, 
China).  The hyperspectral band range is 400-1000 nm, the 
resolution is 3.5nm, and the number of effective bands is 170.  

The data acquisition time of hyperspectral remote sensing 
platform of UAV is between 11:00-12:00 a.m. in each test.  
During each flight, the period with relatively stable solar light 
intensity was selected, and the flight height of UAV is 50 m.  In 
this study, the DN value of rice canopy was transformed into the 
hyperspectral reflectance information of rice canopy by field 
calibration.  A black and white calibration blanket was placed on 
the path in the rice field.  The hyperspectral information of the 
calibration blanket is included in the hyperspectral image collected 
by the UAV during the hyperspectral acquisition process.  The 
DN value is converted into the spectral reflectance by formula (1). 
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where, ρt and DNt are the reflectance and DN values of the ground 
object to be converted, and the reflectance of the calibration 
blanket are ρ1 and ρ2, respectively; DN1 and DN2 are the DN values 
of the calibration blanket. 

We used the ENVI5.4 software to extract the hyperspectral 
data of the acquired hyperspectral remote sensing image, firstly 
using the K-means method is used for hyperspectral data 
classification.  Since the rice field is mainly composed of rice, 
water, soil and other features, and taking into account factors such 
as classification errors, the number of categories is set at twice the 
number of major features and the maximum number of categories 
is set to 6 in this study.  After that, the average spectrum of each 
area of interest was calculated as hyperspectral information for 
each test plot. 
2.3  Measurement of nitrogen content  

Rice was destructively sampled in each experimental plot and 
brought back to the laboratory, and four holes of rice were 
collected from each plot and all fresh leaves of these rice were cut 
and placed in an oven at 105°C for 30 min to be dried at 65°C to a 
co Normalization is taken as nstant volume.  After weighing, they 
were crushed and the ground powder was put into labeled 
self-sealing bags for the determination of the nitrogen content (N, 
mg/g) of the leaves using the traditional Kjeldahl method. 
 

2.4  UAV hyperspectral dimensionality reduction methods 
The full-band spectra acquired by the unmanned hyperspectral 

remote sensing system contain a large amount of redundant 
information unrelated to the nitrogen content of rice, which can 
lead to increased model error during inversion model building.  
Therefore, extracting useful information from the hyperspectral 
data is a prerequisite for building robust and accurate models.  In 
this study, the discrete wavelet multiscale decomposition (DWMD) 
was used to extract hyperspectral information, which was then used 
as the input variable of the nitrogen content inversion model.  

The DWMD can accurately decompose the spectral signal in 
the time domain and frequency.  In the domain for leaf spectral 
information, the transformation of the signal in the time domain is 
equivalent to the transformation of the spectral data in the spectral 
bands, so the wavelet basis function can be expressed as a degree 
decomposition: 

,
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where, a is the telescoping factor; b is the panning factor; λ is an 
independent variable, and the function mean is 0.  The discrete 
wavelet transform is the discrete of the decomposition scale and 
panning, and it is a one-dimensional input signal.  The discrete 
wavelet transform coefficient is the approximation of the base 
function to the signal after discrete scaling and panning, and can be 
expressed by Equation (3): 

, ,( ( ),  ( ))j k j kW f λ φ λ=               (3) 

where the wavelet function can be calculated by Equation (4): 
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where, j and k are the j-th decomposition and k-th wavelet 
coefficients, respectively, and the scale of discrete wavelet 
variation is usually taken as a binary sequence, j = 2,4,8,..., to make 
the calculation more efficient.  In the multi-scale signal 
decomposition based on discrete wavelet transform algorithm, the 
decomposed wavelet coefficients are the approximate coefficients 

for recording low frequency signals and the detail coefficients for 
recording high frequency detail signals.  Coefficients of wavelet 
approximation were selected as inputs for the inverse model. 
2.5  BAS-ELM inversion modeling of nitrogen content 

In this study, the extreme learning machine model based on 
beetle antennae search algorithm (BAS) was used to retrieve the 
nitrogen content of rice canopy.  BAS is an intelligent algorithm 
proposed in 2017 based on the principle of sky cow foraging, for 
multi-objective function optimization.  Since rice nitrogen content 
drone hyperspectral remote sensing inversion model belongs to the 
multi-objective function model, the BAS approach is suitable for 
this study.  BAS is based on the principle that the beetle's left and 
right antennae can sense the intensity of the odor emitted by food.  
BAS is based on the information perception of a single beetle, 
which updates its flight direction by knowing its own local 
information.  Therefore, BAS has the characteristics of being 
computationally simple and flexible.  Therefore, in this paper, we 
will study the optimization of the model parameters of an extreme 
learning machine based on BAS (Figure 2). 

 
Figure 2  BAS-ELM method 

 

The BAS algorithm flow consists of two stages: 
Step 1: For an optimization problem in an n-dimensional space, 

we use xl to represent the left whisker coordinates, xr to represent 
the right whisker coordinates, x to represent the centroid 
coordinates, and d0 to represent the distance between the two 
whiskers. According to hypothesis 7, the head of the beetle is 
arbitrarily oriented, so the direction of the vector from the right 
beard to the left beard of the beetle is also arbitrary, so a random 
vector dir = rands(n, 1) can be generated to represent it. 
Normalization is taken as: dir = dir/norm(dir); we can get xl – xr = 
d0*dir in this way; obviously, xl, xr can also be expressed as an 
expression for the center of mass: 

xl = x + d0*dir/2                  (5) 
xr = x – d0*dir/2                  (6) 

Step 2: For the value function f to be optimized, find the values 
of the left and right whiskers: fleft = f(xl); fright = f(xr); Thus the 
values of two magnitudes can be determined: 

• If fleft < fright, in order to find the minimum value of f, the 
long-horned beetle travels to the left direction step by step, that is: 

x = x + step*normal(xl – xr)             (7) 
• If fleft > fright, in order to find the minimum value of f, the  
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long-horned beetle travels to the right direction step by step, that is: 
x = x – step*normal(xl – xr)             (8) 

• The above two cases can be written uniformly using the 
symbolic function sign: 

x = x – step*normal(xl – xr) *sign(fleft – fright) 

= x – step*dir*sign(fleft – fright)                (9) 
In this study, the RMSE and coefficient of determination (R2) 

were used as evaluation criteria for assessing the accuracy of the 
UAV hyperspectral remote sensing inversion of rice canopy 
nitrogen content in cold area. 

3  Results and discussion 

3.1  Data processing 
A total of 260 sets test data samples were collected in this 

study, and the samples were divided according to the 3:1 ratio of 
training set and validation set according to the Kennard-Stone 
algorithm, 195 of which were randomly selected as the modeling 
data set and the other 65 sets as the validation data set.  The 
maximum nitrogen content of the sample set was 4.874 mg/g and 
the minimum nitrogen content was 1.060 mg/g, with a coefficient 
of variation of 0.32.  
3.1  Results of hyperspectral dimensionality reduction 

The determination of the wavelet master function and the best 
decomposition scale is one of the key aspects of the wavelet 
transform for feature extraction.  With the discrete wavelet 
transform performed on multiple scales, the wavelet master 
function and the decomposition scale can be considered as the best 
choice if the decomposed wavelet information can both reflect the 
contour characteristics of the spectrum and effectively compress 
the data. 

The discrete wavelet transform is performed on the 
UAV-acquired hyperspectral using db10, coif5, and sym8 wavelet 
master functions on the (j=1,2,...,12) scale, respectively, and is 
recorded as scale 1 to 12 (Level 1-12).  After the discrete wavelet 

multiscale decomposition on the hyperspectral data, the number of 
approximation coefficients obtained from each level of grading is 
extracted, and the compression rate with the decomposition level is 
obtained, as shown in Figure 3.  The wavelet approximation 
signal characterizes the profile of the spectrum, and the signal 
reconstruction is performed on the approximation coefficients of 
each layer under different wavelet master functions to calculate the 
correlation coefficients between each reconstructed spectral signal 
and the original spectral signal, as shown in Figure 4 and Table 1. 

 
Figure 3  Compressibility for different wavelet functions 

 
Figure 4  Correlation coefficients for different wavelet functions 

 

Table 1  Number of decompositions under different wavelet generating functions 

db10 coif5 sym8 
Decomposition 

level Relevance t Compression 
ratio 

Approximate 
number Relevance t Compression

ratio 
Approximate

number Relevance t Compression
ratio 

Approximate
number 

1 1.00 0.48 310 1.00 0.48 315 1.00 0.49 308 

2 1.00 0.73 164 1.00 0.71 172 1.00 0.73 161 

3 1.00 0.85 91 1.00 0.83 100 1.00 0.85 88 

4 1.00 0.91 55 1.00 0.89 64 1.00 0.92 51 

5 1.00 0.94 37 1.00 0.92 46 1.00 0.95 33 

6 0.99 0.95 28 0.99 0.94 37 0.99 0.96 24 

7 0.94 0.96 23 0.95 0.95 33 0.95 0.97 19 

8 0.90 0.97 21 0.88 0.95 31 0.88 0.97 17 

9 0.87 0.97 20 0.87 0.95 30 0.87 0.97 16 

10 0.86 0.97 19 0.85 0.95 29 0.85 0.98 15 

11 0.85 0.97 19 0.85 0.95 29 0.85 0.98 15 

12 0.85 0.97 19 0.85 0.95 29 0.85 0.98 15 
 

From Table 2, the number of approximation coefficients 
eventually stabilizes when the number of decomposition layers 
reaches 10.  Compared with the other two types of master 
functions, coif5 wavelet approximation coefficient number, the 
data compression capacity of the weakest, which sym8 wavelet 
master function of the data compression capacity of the strongest.  
It can be seen from Figure 2 and Figure 3 that, using the db10 
wavelet master function combined with the decomposition layers 

7-12, the correlation coefficient change is more consistent 
compared with the other two types of wavelet master functions.  
From the table, after the decomposition of the 9th layer, sym8 
wavelet function has the least number of approximate coefficients 
and the highest correlation coefficient.  Therefore, considering the 
data compression and the ability to preserve the original spectrum, 
the sym8 wavelet function is the most effective when decomposed 
in the 9th layer. 
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Table 2  Results of three modeling methods by ELM, 
PSO-ELM, BAS-ELM 

Methods ELM PSO-ELM BAS-ELM 

0.733 (train) 0.787 (train) 0.864 (train) 
R2 

0.740 (test) 0.812 (test) 0.863 (test) 

0.369 (train) 0.333 (train) 0.247 (train) 
RMSE 

0.382 (test) 0.339 (test) 0.254 (test) 
 

For the discrete wavelet transform, the low-frequency 
approximation coefficients reflect the distinct absorption 
characteristics of the original spectrum and determine the shape of 
the entire hyperspectral, so the decomposed wavelet approximation 
coefficients are used as inputs to the model. 
3.2  Inversion results of BAS-ELM for nitrogen content 

In this study, extreme learning machines (ELM), Particle 
swarm optimization for extreme learning machines (PSO-ELM), 
and beetle antennae search algorithm for extreme learning 
machines (BAS-ELM), were used to develop an inversion model of 
rice nitrogen content using the results of DWMD downscaling as 
input and rice nitrogen content as output. 

PSO and BAS were used to optimize the weight and threshold 
of ELM, and R2 was selected as the fitness function to evaluate the 
nitrogen content model.  The PSO optimum values of the 
parameters are pop = 50, w = 0.9~0.3, C1 = 1.25, C2 =1.25, and  
m = 0.2.  To test the prediction accuracy and learning speed of 
ELM model, the maximum number of iterations of model training 
is set as 300.  R2 and RMSE performance indexes of model 
training samples and test samples are selected to compare and 
analyze the models established by the three methods.  The results 
are shown in Table 2. 

From Table 2, we can see that BAS-ELM is the most effective 
of the three models, with an R2 of 0.864 and an RMSE of 0.247 for 
the training set, indicating that the accuracy and generalization 
ability of the model are satisfactory. 

The model accuracy of the rice nitrogen content inversion 
model using the traditional limit learning machine algorithm is 
weaker than that of the rice nitrogen content inversion model using 
the particle swarm algorithm and beetle antennae search algorithm.  
This result is mainly due to the fact that the model parameters of 
the ELM alone are set at the time of modeling and lack the 
optimization process, i.e., it is not possible to determine whether 
the given parameters are optimal solutions.  Instead, the 
parameters of the ELM model are continuously optimized 
iteratively through the multi-objective function optimization 
algorithm, with the error size between the calculated value and the 
true value as the measurement basis, and the ELM model 
parameters are determined by setting the error threshold, thus 
improving the accuracy of rice nitrogen content inversion. 
3.3  Accuracy analysis of nitrogen content inversion model 

From the three nitrogen content inversion models, the 
performance of BAS-ELM is significantly better than ELM and 
PSO-ELM.  However, the number of individuals in the BAS 
algorithm is only set to one, thus the search space range is limited, 
and there is a possibility of falling into the local optimal solution 
when solving complex problems.  It is in principle the same as 
other groupwise algorithms, which is the common problem of a 
statistical optimization algorithm.  Compared with other 
optimization algorithms, BAS is simple and easy to use in terms of 
model structure and parameter setting, which has attracted the 
attention of many researchers.  The inversion accuracy of nitrogen 
content established by the three methods is shown in Figure 5.  In 

the model adopted in this study, BAS-ELM has the highest 
accuracy, where the R2 of training data, the R2 of test data, the 
RMSE of training data, and the RMSE of test data is were 0.864, 
0.863, 0.247, 0.254. 

 
a. ELM 

 
b. PSO-ELM 

 
c. BAS-ELM 

Figure 5  Results of rice nitrogen content inversion 
 

From the inversion results, the extreme learning machine 
inversion model of rice nitrogen content using the micro-particle 
swarm optimization algorithm and the bull whisker optimization 
algorithm is significantly better than the traditional extreme 
learning machine model.  This is because with the continuous 
iterative optimization on the ELM model parameters, the inversion 
model is capable to seek for better parameters with smaller errors.  
As a contrast, the traditional ELM model parameters are mostly 
given empirically and cannot achieve the optimal model effect. 

4  Conclusions 

This paper is based on the hyperspectral remote sensing image  



64   September, 2020                       Int J Precis Agric Aviat      Open Access at https://www.ijpaa.org                        Vol. 3 No. 3 

data of rice unmanned aerial vehicle (UAV) in Shenyang, Liaoning, 
China, while using destructive sampling to obtain rice nitrogen 
content, and the hyperspectral remote sensing image is downscaled 
by the discrete wavelet multiscale decomposition (DWMD) to 
extract rice hyperspectral remote sensing features.  On this basis, 
ELM, PSO-ELM, and BAS-ELM, were used to establish the 
hyperspectral remote sensing inversion model of rice nitrogen 
content, and the specific conclusions of this study are as follows: 

(1) The hyperspectral range from 400 nm to 1000 nm was 
dimensionally reduced by DWMD, and finally the continuous 
hyperspectral reflectance information was dimensionally reduced to 
sixteen discrete hyperspectral features for subsequent inversion 
modelling of rice nitrogen content. 

(2) In the models adopted in this study, BAS-ELM has the 
highest accuracy, where the R2 of training data, the R2 of test data, 
the RMSE of training data, and the RMSE of test data is were 
0.864, 0.863, 0.247, 0.254. 
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