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Abstract: In previous studies, researchers believed that the reason for the excellent performance of convolutional neural 
networks was that they could learn hidden information from special-purpose datasets, and the emphasis was on learning.  
Recently, the authors of Deep Image Prior proved that the generator structure itself (using convolutional neural network) could 
extract image prior information and be used for the image inpainting task.  In this paper, based on Deep Image Prior, four 
improvements (mix input, network noise, weight decay, and burning mean output) are proposed for preventing overfitting and 
improving output stability.  Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) in two stepwise comparative 
experiments showed that our image inpainting algorithm surpassed the original algorithm and state-of-the-art algorithms after 
adding the proposed improvements in sequence.  In large hole inpainting, the PSNR of our algorithm was 3.23 dB higher than 
in the original Deep Image Prior.  Then, in a binary Bernoulli inpainting experiment, our algorithm achieved better 
performance in most classical image inpainting, proving that the algorithm could use the same set of parameters for each image 
in the task.  In addition, this experiment also illustrated the performance of burning mean output in stabilizing the output and 
reducing the influence of meaningless noise in the early stage of the iteration on subsequent image inpainting. 
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1  Introduction  

In the last decade, benefiting from the development of the 
semiconductor industry, the computation power of graphic 
processing units (GPUs) has grown[1], which has promoted the 
development of high-performance computing.  As a result, deep 
learning-based image processing algorithms, which depend on 
computing resources, have been a focus of research[2].  Another 
key point that makes deep learning-based algorithms perform well 
is the invention and application of convolutional neural networks 
(CNNs)[3].  With the success of AlexNet in the 2012 image 
network competition, convolutional neural networks have become 
more popular and have been used image processing tasks, such as 
image classification[4], object detection[5], crowd counting[6], 
semantics segmentation[7], etc.  

Image collection mainly relies on various sensors.  Nowadays, 
many external factors affect the quality of image transmission, the 
bandwidth of the transmission network, the status of the network, 
the stability of the network, etc., causing distortion of important 
images or key frames in the video, so image reconstruction 
technology is worth researching.  

Furthermore, convolutional neural network has also 
demonstrated its effectiveness in image reconstruction tasks[8].  
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Especially in the design of the network structure, many researchers 
use the autoencoder structure in image reconstruction tasks, in 
which mappings of image space to feature space and feature space 
to image space are used in image reconstruction.  Among them, 
convolutional neural networks are often used in the design of 
encoders and have been proven to achieve reasonable results.  In 
previous studies, many scholars noted that the success of CNN is 
mainly due to its nonlinear activation function and multiple hidden 
layer structure, which contains millions of parameters; the structure 
can learn the hidden relation between input and output by training 
with an appropriate dataset, and its core process is iterative learning 
in backward propagation[9].  However, some researchers have 
questioned this in their latest research; that is, they question 
whether learning is the only reason why convolutional neural 
networks perform well.  For instance, the authors of[13] recently 
showed that the same image classification network that generalizes 
well when trained on genuine data can also overfit when presented 
with random labels.  

In a latest research, the authors of Deep Image Prior show that 
the convolutional neural network structure itself can obtain 
low-level semantic information from a degraded image through 
network parameter iterative learning, and the learned semantic 
information is enough to complete tasks such as image inpainting, 
denoising, and super-resolution, etc.[10].  It is noteworthy that the 
input supporting these deep learning-based image processing 
applications can only be a degraded image; furthermore, no 
additional dataset is needed to support learning.  However, in 
Deep Image Prior, in order to achieve the same image 
reconstruction effect as the state-of-the-art algorithms in 
comparative experiments, it is necessary to adjust the network 
structure and parameters for each specific image reconstruction 
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task, even each image.  Therefore, this method is cumbersome and 
cannot be applied to streamlining image inpainting tasks. 

As the main contribution of this paper, four main 
improvements are proposed: mix input, network noise, weight 
decay, and burning mean output.  The reason for adding network 
noise and weight decay is to prevent the influence of overfitting as 
much as possible (because overfitting will cause the hourglass 
architecture to generate an image exactly the same as the degraded 
image x0).  The reason for adding the mix input strategy is to 
prevent the appearance of large areas of dead neurons that cannot 
be updated iteratively.  The benefit of burning mean output is to 
stabilize the output image and prevent meaningless noise in the 
previous iteration from affecting the subsequent image repair 
performance.  In two stepwise comparative experiments, large 
hole inpainting and binary Bernoulli inpainting, were performed.  
In comparative experiments with the state-of-the-art algorithms, 
after adding the improvement strategy step-by-step, our algorithm 
achieved a gradual optimization effect in the evaluation standard 
PSNR and SSIM.  In the large hole inpainting of image library, 
compared with the original Deep Image Prior algorithm, the 
algorithm in this paper improved the PSNR by 3.23 dB after adding 
all of the improvement strategies.  In the binary Bernoulli 
inpainting experiment, we used the same set of parameters in the 
inpainting task for each classic image.  Finally, our algorithm 
achieved higher PSNR value and better visual performance than the 
original Deep Image Prior and other state-of-the-art algorithms in 
this stepwise comparative experiment. 

2  Related works 

2.1  Image inpainting and image prior information 
The prior information of the degraded image is a key factor to 

decide the performance of image inpainting[11], because even if the 
image has been degraded, it still contains features that need to be 
referenced in image inpainting.  In the field of natural image 
processing tasks, image inpainting is a typical reverse problem, 
therefore the solution of the problem is not fixed.  From the 
perspective of statistics, the solution process of the image 
inpainting task conforms to Bayes’ theorem, in which the prior can 
be represented as a prior probability.  In order to reduce the 
solution space of the problem while better approximating the real 
solution, some constraints are needed.  In the inpainting task, the 
prior can be considered as a constraint factor making the restored 
image obtain the basic semantic features of the original image as 
much as possible.  From this point of view, the image inpainting 
task can be represented by the following formula: 

x = argminx f(x, x0) + p(x)               (1) 
where, x is the original image; x0 is the degraded image; p(x) is the 
prior item of the degraded (noisy/low-resolution/occluded) image, 
and f(x, x0) is mapping between x and x0.  In this paper, image 
inpainting can also be presented by a standard regularization, which 
is similar to Formula (1):  

x = argminx E(x, x0) + R(x)               (2) 
where, x is the original image; x0 is the degraded image; R(x) is a 
regularizer, and the choice of task-dependent loss E(x, x0) is often 
directly dictated by the application.  In this research, as mentioned 
before, the structure of the convolutional neural network itself 
proved to be able to learn prior information from a degraded image, 
therefore the inpainting operation performs image reconstruction 
from a fixed random tensor C H Wz ′ ′ ′× ×∈ .  In this paper, the 
relationship between the neural network and the degraded image is 
expressed in a parameterized way: x = fθ(z).  Here, 3 H Wx × ×∈ , 

and the network maps the parameter θ, comprising the weights and 
bias of filters in the network structure, to x.  Therefore, in this 
paper, the image inpainting task can be expressed by 
parameterization method, in the following formula: 

θ*
 = argminE(fθ(z), x0) + R(fθ(z))             (3) 

where, θ* is the parameter of the convolution neural network when 
the image inpainting achieves the best performance in practice, and 
R(fθ(z)) is the prior information hidden in the network structure. 
2.2  Convolutional Neural Network 

When studying the visual system of cats, biologists Hubel and 
Wiesel found that the transmission of visual information from the 
retina to the brain was accomplished through the activation of 
multiple levels of receptive fields[12].  Based on this, they 
proposed the concept of receptive field.  Inspired by this concept, 
convolutional neural network was proposed.  The optimization of 
convolutional neural network is mainly due to the concept of 
weight sharing and the convolutional–downsampling layer 
combination.  When convolutional neural networks are used in 
tasks such as super-resolution and image denoising, generally they 
are used to construct an end-to-end mapping (between the degraded 
and restored image).  In this construction, the feature extraction of 
degraded images is completed by convolutional neural networks in 
the process of downsampling.  Therefore, this is also one of the 
main purposes of using convolutional neural networks in the image 
inpainting task. 

By using the CNN structure, one can establish a mapping 
between a large area in low-dimensional space and a certain value 
or small area in high-dimensional space; furthermore, by adjusting 
the depth of the convolutional layer and the size of the filter, the 
image space is mapped to a three-dimensional (width, height, depth) 
feature space, and this feature space is composed of feature maps 
formed by operation of the convolutional kernel (also called a 
filter), the input of which is the output of the previous layer.  The 
operation of the convolution layer is shown in the formula: 

1( )
i

l l l l
j i ij ii M

x f x k b−
∈

= ∗ +∑             (4) 

where, l
jx  is the jth feature map of the lth layer of a deep 

convolution structure; f represents the activation function; M is the 
set of input feature maps; * represents the convolution operation; k 
is the convolution kernel, and b represents the bias term.  In the 
image inpainting deep convolutional neural network, the size of the 
receptive field and the complexity of the features that can be 
extracted by a convolutional neural network will change with the 
deepening of the convolutional layer.  In low-dimensional 
convolutional layers that are close to the input image, the network 
may only extract some low-level features such as edges, curves, 
and corners and other low-level semantic information; with 
deepening of the convolution layer, the network then can learn 
more complex and high-level semantic features in the deeper layer 
near the output (generally the feature vectors generated by the 
encoder).  Furthermore, the basic tool for establishing the 
mapping mentioned above is a neuron with learnable weight and 
bias.  Each neuron can receive the output from the previous layer, 
and then use the activation function to establish a nonlinear 
relationship between neurons.  The weights and bias in neurons 
can be learned by the backward propagation process, aimed at 
minimizing the task-dependent loss function.  Deep Image Prior 
based image inpainting proved that prior information can be 
learned from the convolutional structures, so other characteristics 
of convolutional neural networks should be mentioned.  

Due to overfitting, the image inpainting model based on the  
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principle of Deep Image Prior will eventually generate an image 
exactly the same as the degraded image, thus losing the meaning of 
inpainting.  Therefore, the characteristics of the convolutional 
neural network structure that can prevent overfitting should also be 
mentioned.  Generally, the more parameters in the model, the 
more likely there will be overfitting.  In terms of reducing the size 
of the parameter, the sparse connectivity mechanism of the 
convolutional neural network is one method.  In the backward 
propagation (BP) neural network, the neuron nodes of each layer 
obtaining a linear one-dimensional structure, and the neurons 
between layers are fully connected.  On the contrary, a 
convolutional neural network uses the local correlation between 
layers to make the neurons of each adjacent layer only connect with 
the upper neuron nodes that are close to it (the local connection 
mechanism).  Generally, in image inpainting tasks, the 
performance of a pixel after inpainting mainly depends on its 
neighboring pixels; this also corresponds to the sparse connectivity 
mechanism of the convolutional neural network, which greatly 
reduces the parameter scale of the network. 

At the same time, weight sharing also reduces the parameter 
amount.  In CNN, each filter of the layer repeatedly acts on each 
receptive field when the input is being convolved.  Then, the 
convolution result constitutes the updated feature maps, and the 
expression of features is also updated accordingly.  When 
convolution operation is performed on a feature map, for each 
receptive field, a filter with the same parameters will be used, 
including the same weight and bias.  The advantage of weight 
sharing is that the location of local features in the input is not taken 
into account when extracting features from images; meanwhile, this 
sharing will greatly reduce the parameter amount.  For example, 
when the size of an input image is 192×192, if the weight sharing 

mechanism of the 3×3×32 convolution kernel of the first layer is 
removed, the number of parameters will become 192×192×32, 
which is about 1.17 million parameters, or 4096 times the original 
288 parameters. 

Pooling is a nonlinear downsampling method in the CNN 
structure (shown in Figure 1).  In the image inpainting model, 
which uses the autoencoder structure, after obtaining image feature 
information through convolution, the model will use these features 
to perform an upsampling operation to achieve image 
reconstruction.  However, not all features need to be presented 
separately.  The convolution layer can reduce the dimension of 
convolution features by a pooling operation.  In the process of 
pooling, a feature map will be divided into several n×n disjoint 
regions, and after dimensionality reduction, the maximum (or 
average) value of these regions will be used to represent the feature.  
Among the advantages of the pooling operation, it can reduce the 
size of the image, increase the receptive field size of the 
convolution kernel, and reduce the computational complexity while 
preserving the features as much as possible.  it is noteworthy that 
maximum pooling has shift invariability; even if the image has a 
small displacement, the extracted features will remain.  In this 
efficient sampling method, which reduces the data dimension, the 
pooling operation also enhances the robustness of the model and 
reduces the useless information, which is helpful for feature 
extraction.  Therefore, in the image inpainting task, the prior 
information of image texture features can be extracted more 
effectively.  On the other side, average pooling can preserve 
background information.  Both pooling methods can reduce the 
amount of network parameters to prevent overfitting, and allowed 
us use the interrupted iteration method to output a repaired image 
more effectively. 

 
Figure 1  Typical convolutional neural network 

 

In the Deep Image Prior article, it can be seen from the 
process of model fitting that in the image reconstruction tasks 
(such as super-resolution, large hole inpainting, image denoising, 
etc.), the longer the fitting process, the more helpful it is to find a 
suitable time to interrupt the iteration, which means that the 
model needs to combat the overfitting problem to the greatest 
extent.  Generally, the model overfitting problem refers to 
excessively high performance in fitting the training data.  The 
result is that the model cannot be effectively applied to unfamiliar 
data.  In this study, the realization of image reconstruction  
tasks relies on interrupting the iterative process at an appropriate 
time.  Therefore, once the overfitting phenomenon occurs, the 
model will generate an image exactly the same as the degraded 
image x0; once this happens, the inpainting model will lose its 
meaning. 

The model for the super-resolution reconstruction task was 
trained in order to show the degradation caused by the overfitting 
problem in the research of this paper; meanwhile, according to the 
number of iterations, images of different fitting stages are 
generated for observation.  It can be observed from the figure that 
image reconstruction starts from random noise 32 H Wz × ×∈ .  In 
the initial stage, due to the high Mean Square Error (MSE) value 
and poor learning of image features by the parametric network, the 
image cannot be reconstructed reasonably (50 iterations).  
However, the low-level semantic information in the degraded 
image, such as color distribution and partial contour, can be 
obtained, while the background and key contents of the image are 
distinguished in some areas.  As the iteration continues, in the 
underfitting stage, more semantic information is learned by the 
parameterized network (the image outline is clearer and the color 
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distribution is further determined).  However, shown in Figure 2, 
in the image generated after 120 iterations, it can also be found that 
the inpainting performance is still not ideal, the image features x0 
have not been fully learned, and the effect of super-resolution 
reconstruction has not been achieved.  In the just-right stage 
(about 2500 iterations), the parameterized network fθ(z) achieves 
the best image super-resolution reconstruction performance, the 
image contour is sharper and clearer, and the color partition is also 
obvious enough, which shows that the convolutional neural 

network structure has learned enough semantic information and can 
give priority to output an image with higher resolution.  Finally, 
the blur on the contour and some meaningless noise will be learned 
as high-level semantics in the overfitting stage (over 60,000 
iterations).  At this stage, through the mapping of the 
parameterized network, the model can only generate an image that 
is exactly the same as the input (a degraded image), so thus far, the 
parameterized network has no normalization ability and image 
inpainting function. 

 
Figure 2  Stepwise generated images in super-resolution reconstruction task 

 

3  Materials and methods 

3.1  Overfitting 
According to the advantages of convolutional neural network 

in preventing overfitting and image generation after model 
overfitting, overfitting must be prevented.  In this paper, the 
improved Deep Image Prior image inpainting model uses 
regularization to prevent overfitting.  Then an appropriate 
iteration time is selected in the model fitting stage, and the iteration 
will be interrupted.  Finally, a restored image will be generated by 
using this parametrized model.  Since in this paper MSE is used as 
the loss function, we use the L2 loss to illustrate the relationship 
between regularization and loss function.  In common tasks, 
regularization based on the mean square error can be expressed by 
the following formula:  

2
1

1( ) ( ( ) ) ( )
2

m
i ii

L h x y r
m θθ θ

=
= − +∑            (5) 

where, the first half is an approximation item; θ is the parameter; 
hθ(xi) is the predicted value; yi is the label value of the sample, and 
r(θ) is the regularization item.  The additional regularization item 
can prevent the loss function from being too close to 0, so the 
parameters need to be limited.   
3.2  Regularization and network noise 

In this research, noise-based regularization is used.  In the 
Deep Image Prior based image inpainting model, in order to prove 
that the prior information of the image is obtained by the CNN 
structure itself, rather than from the image x0, in each iteration an 
additive normal noise is added to the input z with zero mean and 
standard deviation.  This shows that during training, the input of 
each iteration changes randomly, and during the initialization phase 
of the network, the weight parameters of the network are initialized 
randomly, therefore it is only the deep convolutional network 
structure itself that obtains the prior information.  In the research, 

in order to reduce the degradation caused by overfitting as much as 
possible while proving the network structure’s prior information 
extraction capability, in each iteration, additive normal noise with 
zero mean and standard deviation was also added to the network 
weight parameter θ.  Therefore, in this model, the loss function 
calculation process in each iteration can be expressed by the 
following formula: 

_

2
_ 0( ( ) )noisyG noisy zl f z G xθθ θ += + −             (6) 

where, lθ is the loss function when the network parameter is θ; 
Gnoisy_θ is the random noise perturbing the parametrized network 
(with zero mean and standard deviation), and Gnoisy_z is the random 
noise perturbing the input z (with zero mean and standard 
deviation).  The parameter relationship and prior information 
section of the reconstructed image can be expressed by the 
following formula: 

_ _

*
_ 0 _( ( ), ) ( ( ))noise noiseG noise z G noise zargminE f z G x R f z Gθ θθ θθ + += + + +         

(7) 
where, θ* is the parameter of the convolutional neural network 
when the image inpainting achieves the best performance in 
practice (trained with random noise Gnoisy_θ and Gnoisy_z).  The 
second half of the formula is the image prior information of the 
trained network structure by adding random noise to the network 
parameters. 
3.3  Mix input 

From the experiment with Deep Image Prior, it can be seen 
that parameterization offers high impedance to noise, therefore 
image reconstruction using noise as input is the slowest in the 
fitting process of parameter training.  In the image inpainting task, 
we considered two types of degradation, large hole inpainting and 
binary Bernoulli inpainting (the image is sampled to drop 50% of 
pixels at random).  In order to ensure the gradient descent speed 
of parameterization, the mix input type (a combination of image 
and noise) was used in the experiment.  Compared with the 



December, 2020                  Wang J S, et al.  Image inpainting algorithm based on improved Deep Image Prior                  Vol. 3 No. 4   69 

32 H Wz × ×∈  noise-based reconstruction method, the combined 
image and noise input method in this paper makes the 
parameterized network fθ(z) converge faster.  This input method 
has another advantage for large hole inpainting.  In this type of 
inpainting task, the missing part of the degraded image will form 
many non-informative and non-gradient areas.  If rectified linear 
unit (ReLU) is used as the activation function, many unlearnable 
areas where the derivation result is zero will be formed, containing 
many dead neurons[14], and they will become a burden in the 
network structure because the weights of such areas cannot be 
updated even if they undergo multiple iterations.  Due to the 
limitation of the ReLU activation function, it is difficult for the 
image inpainting model to reconstruct such areas with good 
performance.  Fortunately, we found that after noise is added to 
the image, the missing areas will become relatively “soft”.  In the 
convolution structure, the activation function values in the area will 
not be zero, therefore the weights of the large holes can be 
continuously updated during the iteration process. 
3.4  Weight decay 

When using the naive gradient descent, L2 regularization has 
the same effect as weight decay, because the influence of the 
regularization item on the weight is to make the weight attenuate a 
certain value in each iteration.  However, when using Adam, the 
learning rate will gradually decrease, which makes the model 
converge better.  If L2 regularization is used during Adam 
optimization, the effect of the regularization item will vary with the 
learning rate, because when calculating the gradient, the subtraction 
item needs to be divided by the sum of the gradient squares, which 
makes the item too small to realize the original definition of weight 
decay; the greater the weight, the greater the decay.  This is one of 
the reasons why the performance of Adam optimization is 
sometimes worse than the performance of stochastic gradient 
descent (SGD) with momentum.  The weight decay updates all 
weights with the same coefficient, and the penalty value is related 
to the value of the parameter; the greater the weight, the greater the 
penalty, as expressed by the weight decay formula:  

2
0 12

m

i
J J

m
λ θ

=
= + ∑                 (8) 

where, λ is the decay coefficient and θ is the weight parameter.  
The reason for multiplying by 1/2 is to facilitate differential 
calculation; J is the cost function and J0 is the cost function before 
weight decay.  After derivation, the following formula can be 
obtained:  

0J J
m
λ θ

θ θ
∂ ∂

= +
∂ ∂

                 (9) 

The following complete formula can be obtained by 
introducing this result into the weight decay formula:  

0
0 0

0
(1 ) J

m
λθ λ θ α θ

θ
∂⎛ ⎞

= − − +⎜ ⎟∂⎝ ⎠
           (10) 

where, θ is the weight value after the decay; θ0 is the original 
weight value, and α is the learning rate.  From the formula, it can 
be found that after the original gradient decreases, the weight 

parameter needs to subtract an additional value, 0m
λ θ , which is 

positively related to the weight value.  Therefore, the greater the 
weight, the more decay, which can effectively reduce the cost 
function.  In addition, after the weight is attenuated a little, 
another benefit is that the entire neural network will not be too 
sensitive to noise.  If the weight is too large, a little change in the 

corresponding input value will have a large effect that will 
significantly change the output. 
3.5  Leaky ReLU 

Rectified linear unit (ReLU) is the most commonly used 
activation function in neural networks.  ReLU retains the 
biological inspiration of the step function (the neuron is activated 
only when the input exceeds the threshold), but when the input is 
positive, the derivative is not zero, which allows gradient-based 
learning (although at x=0, the derivative is undefined).  Using 
ReLU can improve computational efficiency, because neither the 
function nor its derivative contains complex mathematical 
operations.  However, when the input is negative, ReLU will 
directly invalidate the neuron, which is called dead ReLU, because 
if the input is negative, the gradient will be zero, so the neuron’s 
weight cannot be updated and it will remain silent during the 
remaining iterations, which is called dead neuron.  The 
performance in the large hole inpainting task is not ideal.  In order 
to solve the shortcoming of the ReLU function, a leakage value is 
added to the negative half of the function, so it is called leaky 
ReLU, as shown in Figure 3. 

 
Figure 3  Leaky rectified linear unit (ReLU) 

 

The formula of leaky ReLU[15] is as follows: 
 ,     0

,    0i

x if x
y

a x if x
≥⎧

= ⎨ <⎩
                 (11) 

In the formula, ai is a fixed parameter within [0,1).  The leaky 
ReLU function is a variant of the ReLU activation function.  This 
function has a small slope for negative inputs.  Since the 
derivative is always non-zero, this can effectively reduce the 
appearance of silent neurons and make its parameters available for 
gradient-based learning (although it will be relatively slow).  As a 
result, the problem of neuron silence caused by the ReLU function 
entering the negative interval is solved. 
3.6  Burning mean output 

In the training optimization strategy, a new weighted output is 
proposed, called burning mean output, and in the comparative 
experiment, we proved that it performs better in most cases.  In 
the original Deep Image Prior algorithm, the author provided two 
types of output: directly output the result, or combine the previous 
and current output images with different weights, which we call 
average mean output.  However, in actual image inpainting tasks, 
especially in the initial stage of training, the output images are all 
messy or have very low PSNR.  The weighted output of such 
images is meaningless and may even cause a certain degree of 
interference to the images generated in subsequent training.  So, in 
our algorithm, an adaptive weighted intervention output method is 
proposed.  We found that in the inpainting application, after 5000 
iterations, the image will gradually tend to be stable, so we chose to 
carry out weighted intervention on the output at 5000 iterations.  
3.7  Model outline 

In terms of the design of the network structure, this study uses 
the same structure as Deep Image Prior, which uses the 
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encoder-decoder structure in large hole inpainting and a U-Net-like 
“hourglass” architecture with skip connections in binary Bernoulli 
inpainting. 

As shown in Figure 4, in the inpainting, starting from a mix 
input (noise + degraded image x0), we iteratively update the 

parameters in order to minimize the data term E(fθ(z), x0).  At 
every iteration the weights θ are mapped to an image x = fθ(z).  The 
image x is used to compute the task-dependent loss E(x, x0).  The 
gradient of the loss related to weights θ is then computed and used 
to update the parameters.  

 
Figure 4  Model outline. 

 

4  Results and discussion 

In the contrast experiment, two commonly used standards of 
evaluating image inpainting performance were used, peak 
signal-to-noise ratio (PSNR)[16] and structural similarity (SSIM)[17].  
PSNR is the most common and widely used objective evaluation 
method for image reconstruction.  However, the PSNR value 
cannot be completely consistent with the quality of human vision, 
so in this comparative experimental design, reconstructed images 
were shown to verify the improved reconstruction performance.  
In order to show the main improvements in image inpainting 
(network noise, mix input, weight decay, burning mean output) 
compared with Deep Image Prior, in the task of large hole painting, 
an image library was selected to achieve the step-by-step 
experiment, add improvement strategies in turn, and record the 
PSNR and SSIM after each improvement, proving the effectiveness 
of the improved strategy.  The improvement strategy was applied 
sequentially, the PSNR and SSIM values after each improvement 
were recorded separately, and the effectiveness of the improvement 
strategy was proved accordingly.  In the experiment we also 
compared the final result with the state-of-the-art algorithms, 
generating the images shown in Figure 5; PSNR and SSIM are 
shown in Table 1. 

In the binary Bernoulli inpainting experiment, we used the 
same classic images as Deep Image Prior.  Compared with the 
Deep Image Prior method, which adjusts the parameters of each 
task separately, this experiment was intended to prove that our 
model can reconstruct all images in the task with same set of 
training parameters and performs better than the original algorithm 
in most inpainting of degraded images.  We limited the number of 
iterations to 20000 times and recorded the PSNR results of each 

inpainting strategy (using average mean output, burning mean 
output, average mean output + mix input, burning mean output + 
mix input + weight decay + network noise), then compared with 
the state-of-the-art algorithms, and generated the images shown in 
Figure 6; PSNR is shown in Table 2.  On the other hand, since the 
author has compared the parameters in Deep Image Prior, the best 
performance one of which was used in this study. 

In this research, as mentioned above, one of the key reasons to 
use the image inpainting algorithm based on Deep Image Prior is to 
prevent overfitting.  Once overfitting occurs, in addition to the 
deterioration of inpainting performance in human visual judgment, 
another degradation is decreased PSNR value.  In order to verify 
the improvement of the overfitting phenomenon by our model, the 
change of PSNR was recorded with the change of iteration times in 
a binary Bernoulli inpainting experiment.  In the result analysis, 
the PSNR variation curves for three types of output (direct, average 
mean, burning mean) were drawn to illustrate the advantage of 
burning mean output (Figure 7). 

Figure 7 shows the PSNR variation curves of classic images in 
Deep Image Prior.  PSNR increased rapidly before about 1500 
iterations, peaked after 2000–2500 iterations, and then began to 
decline under the influence of overfitting, therefore the 
performance of image inpainting began to decline after the peak.  
In contrast, in our improved algorithm, there are no obvious peaks 
in the curves.  Instead, there is a change from fast rising to slow 
climbing after about 2500 iterations; moreover, there is no trend of 
decreasing PSNR value in these output curves.  Furthermore, from 
the perspective of output methods, whether in the original Deep 
Image Prior algorithm or the improved algorithm in this paper, the 
green curve representing burning mean output performed better; the 
curve was stable and had a higher PSNR value.  

 

Table 1  Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) results of large hole inpainting 

 
ours with mix 

input 
ours with mix input + 

network noise 

ours with mix input + 
network noise +  

weight decay 

ours with mix input +  
network noise + weight decay + 

burning mean output 

original Deep 
Image Prior 

CDD [18] 

(Curvature Driven 
Diffusions) 

Shepard 
networks[21] 

PSNR 19.34 20.54 20.57 21.80 18.57 14.52 12.79 

SSIM 0.82 0.85 0.85 0.86 0.84 0.82 0.80 
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Table 2  PSNR and SSIM results of binary Bernoulli inpainting 

 Barbara Boat Lena Peppers C. man Couple Finger Hill Man 

GLCIC 12.33 12.90 13.51 13.99 12.58 14.39 12.16 14.39 14.44 

Average mean output 28.58 29.76 32.75 29.67 26.66 29.62 30.70 30.10 29.64 

Burning mean output 29.15 30.23 33.67 30.77 26.74 29.89 31.02 30.36 29.82 

Average mean output + mix input 32.87 32.68 34.21 31.65 27.80 32.29 32.05 32.88 31.90 

Papyan et al. 28.14 31.44 35.04 31.11 27.90 31.18 31.34 32.35 31.92 

Original Deep Image Prior 32.22 33.06 36.16 33.05 29.80 32.52 32.84 32.77 32.20 

Burning mean output + mix input + weight 
decay + network noise 33.46 33.17 36.17 33.35 28.90 32.78 32.71 33.46 32.44 

 

 
a. Original image b. Masked image c. Inpainting with mix input 

 

 
d. Inpainting with mix input and network noise e. Inpainting with mix input, network noise,  

and weight decay 
f. Inpainting with mix input, network noise, weight 

decay, and burning mean output 
 

 
g. Original Deep Image Prior inpainting result 

Figure 5  Results of stepwise large hole inpainting experiment  
 

 
a. Original image b. Corrupted image c. GLCIC[19], PSNR = 14.39 



72   December, 2020                       Int J Precis Agric Aviat      Open Access at https://www.ijpaa.org                        Vol. 3 No. 4 

 
d. Papyan et al[20]., PSNR = 31.34 e. Deep Image Prior, PSNR = 32.84 f. Ours, PSNR = 33.46 

 

Figure 6  Results of binary Bernoulli inpainting experiment 

 
a. Couple in Deep Image Prior  b. Boat in Deep Image Prior 

 
c. Couple in ours  d. Boat in ours 

Figure 7  PSNR variation curves 
 

5  Conclusions  

In this paper, based on the original Deep Image Prior algorithm, 
the convolution structure of the generator was used to obtain image 
prior information and perform the image inpainting task.  Four 
improvements are proposed (mix input, network noise, weight 
decay, and burning mean output) in order to prevent overfitting 
while stabilizing the output.  Two stepwise comparative 
experiments, large hole inpainting and binary Bernoulli inpainting, 
were used to compare our algorithm, Deep Image Prior, and 

state-of-the-art algorithms.  In the results of the large hole 
inpainting experiment, the PSNR of our algorithm was 3.23 dB 
higher than that of Deep Image Prior.  In binary Bernoulli 
inpainting, we used the same set of parameters for all classic 
images and in most cases exceeded the original and state-of-the-art 
algorithms after applying all of the improvement strategies.  This 
experiment also proved that burning mean output could stabilize 
the output and avoid the interference of meaningless noise 
generated in the previous iterations in subsequent image inpainting 
performance. 
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