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Abstract: Detection of crop heights by UAVs is fast and accurate and can reflect the growth situation of crops.  The core of 
this operation is the measurement of UAV flight altitude.  In order to improve the accuracy of the response to the variation of 
flight altitude, a light-weight altitude detection system was developed for plant-protection UAVs.  A millimeter wave radar 
(MWR) was used as the altitude detector.  Moreover, a data fusion algorithm based on the Adaptive Kalman Filter (AKF) was 
developed.  The altitude data by the MWR, the angle data by the Inertial Measurement Unit (IMU) and the position data by 
Global Positioning System (GPS) were processed by the AKF to obtain optimal updated values, and the optimal updated values 
was fused to establish the distribution map of crop heights.  Results of the trials in the condition of the flight heights of 5 m 
and 10 m indicated that: 1) compared with the direct detection by the MWR, the error of detection was reduced by 0.035 m.   
2) compared with real crop heights, the error of detection was 0.02 m.  The developed system could achieve the accurate 
detection of the crop height, providing a new theoretical model and technical idea for the UAVs configured for plant-protection. 
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1  Introduction  

The measurement of crop height is of great significance to the 
normal growth of crops[1-8].  At present, plant protection UAV is 
widely applied in plant protection[9,10].  Detection of crop heights 
by UAVs is fast and accurate and can reflect the growth situation of 
crops.  The core of this operation is the detection of flight altitude.  
Currently, there are many studies regarding the altitude detection 
for UAVs.  Ultrasonic sensors[11], LIDAR[12,13], Image sensors[14] 
and millimetre wave radar (MWR)[15-18] are commonly used as 
measurement devices.  Detection by a single sensor is a basic 
approach.  For instance, Zhou et al[19] utilised a type of 
high-accuracy MWR to measure the altitude of the UAV.  The 
detection was accurate with less than 1% error in the condition of 
15-meter-less flight, but the cost based on a single high-accurate 
MWR is very high.  The accuracy of the measurement highly 
relies on that of the sensor. 

In order to solve the shortcomings of single sensor detection, 
some researchers applied multi-sensor information fusion methods 
to fuse data from senso he Extended Kalman Filter (EKF).  Based 
on this, Campos et al[24] fused the data form a GPS, an IMU and an 
optical flow sensor to obtain estimated altitudes.  The results 
illustrated that when the UAV flew at a constant speed and the 
flight altitude was 5m, the detection altitude error was 0.135 m.  
However, if the drone accelerates, the detection accuracy fluctuates 
greatly.  In order to improve the detection stability, Huang et al[25] 
and Tu et al [26] fused the data from a barometer, a GPS, and an 
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IMU, using an adaptive complementary filtering algorithm or 
Kalman filter for data filtering.  The methods had high detection 
accuracy, but were not suitable for low altitude detection.  Hu et 
al[27] proposed a low altitude detection method, which filtered and 
fused the data of a barometer, an ultrasonic sensor, a GPS and an 
IMU by Fault Tolerant Kalman Filter (FTKFT).  The maximum 
altitude error was 0.5 m when the UAV flying altitude was 2.5 m.  
The error was a little large.  Wu et al[28] fused GPS data with the 
data of 3 MWRs by the Kalman Filter.  The error of this method 
was low.  However, in order to reduce the errors, too many 
sensors were applied and the amount of data processed was too 
large.  Based on the idea of achieving accurate measurement 
distance, some studies[29-31] applied the Adaptive Kalman Filter 
(AKF) to processed the data, and illustrated the AKF can 
effectively restrain the filter divergence and has excellent filtering 
performance.  

Thus, in order to achieve high-precision detection of crop 
heights in terms of light weight, this paper developed a crop height 
detection system based on a MWR, and a corresponding data 
fusion algorithm based on the AKF was developed to achieve 
accurate measurement of the crops height. 

2  Materials and methods 

2.1  Hardware 
Figure 1 showed the types of altitudes during the UAV 

operation.  This paper focused on the altitude of test object, due to 
its great significance for plant protection.  Therefore, a system for 
detecting crop altitude was developed, as showed in Figure 2, 
consisting of four modules: a data acquisition module, a slave 
computer, a wireless transmission module and a host computer.  
DJI Phantom 3 (DJI Co, Ltd, Guangdong, China) was used to carry 
the modules. 

In terms of the data acquisition module, an NRA24 MWR 
(Nanoradar Technology Co, Ltd. Hunan, China) was utilized to 
measure the relative altitude.  An IMU, JY901 (Junyue Intelligent 
Control Technology Co, Ltd, Guangdong, China), was applied to 
measure flight angles and acceleration.  Meanwhile, a global 
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positioning unit, ATK-S1216F8-BD (SkyTraq Technology, Inc. 
Taiwan, China), was employed to get real-time positions of the 
UAV.  0For the wireless transmission module, digital 
transmission radio, XROCK V3 (Xili innovation Electronic 
Technology Co, Ltd, Zhejiang, China), was selected due to its long 
transmission distance.  In addition, a microcontroller, 
STM32F103 (Xingyi Electronic Technology Co, Ltd, Guangdong, 
China), was exploited as the slave computer, while the host 
computer was a notebook computer.  The specifications were 
listed in Table 1. 

 
Figure 1  Definition of flight altitude of plant protection UAV 

 
IIC: Inter-Integrated Circuit   UART: Universal Asynchronous Receiver/Transmitter 

Figure 2  Structure diagram of the detection system 
 

Table 1  Specifications of NRB24 MWR, JY901 IMU, 
ATK-S1216F8-BD, XROCK V3, DJI Phantom 3 

Devices Main parameter Values Remarks 

Transmitting frequency/GHz 24.00-24.20  

Ranging distance/m 0.1-50  

Ranging accuracy/m ±0.02  

Power consumption/W 1.4-1.8 5V DC 25°C
NRA24 MWR 

Size/mm 130×70× 
14.5 

Length×Width 
×Altitude 

Operating Voltage/V 3.3-5  

Operating current/mA 25  

Measurement accuracy/(°) 0.01  JY901 IMU 

Size/mm 15.24× 
15.24×2 

Length×Width 
×Altitude 

Positioning accuracy/mCEP 2.5  

Update rate/Hz 20  

Working temperature/°C -40-85  
ATK-S1216F8-BD 

Size/mm 25×27 Length×Width

Baud rate 57600  

Communication distance/m ≤800  

Operating voltage/V 3.7-6 DC XROCK V3 

Size/mm 49×25×13 Length×Width 
×Altitude 

Load/g 1280  

Working temperature/°C  
0-40  

Fight time/min 23  
DJI Phantom 3 

Horizontal flight speed/m·s-1 ≤16  
 

2.2  Data fusion algorithm based on the Adaptive Kalman 
Filter (AKF) 

The data fusion algorithm was based on the AKF.  The data 
from the MWR, IMU and GPS was used to obtain the parameters 

of both the state equation and the measurement equation.  Then, 
the data from the MWR were modified by the angle data from the 
IMU.  Meanwhile, the modified data and the data from the GPS 
and IMU was asynchronously fused by the AKF to get final 
appropriate height results. 
2.2.1  Determination of the AKF 

The AKF was the key section for data fusion.  The Figure 3 
showed algorithm flow chart.  According to the definition of the 
AKF, the core is to determine the state equation and the 
measurement equation.  These two equations in the flight 
condition were determined as follows. 

 
Figure 3  Algorithm flow chart 

 

The data of the MWR and IMU was state variables.  
According to the relations of each state variables, the three basic 
aspects below could be obtained. 
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1) If the flight altitude was hr and the noise generated by the 
MWR was ω1, the detection altitude by the MWR, Hm, was: 

Hm = hr + ω1                   (1) 
2) If the noise included in the position information by the GPS 

was ω2, and the crop height was hf and the detection altitude of the 
GPS, HGPS, was: 

HGPS = hf + ω2 + hr                (2) 
3) If the noise of the vertical acceleration by the IMU was ω3 

and the actual vertical acceleration was ar, the detection 
acceleration of the IMU, aj, was: 

aj = ar + ω3                   (3) 
Then, based on the definition of measurement equation, the 

measurement equation of the system should be: 
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Meanwhile, the flight altitude, hr, vertical acceleration, ar, and 
velocity, vg, were selected as state variables.  If the UAV was 
uniform motion, the acceleration, aj, will not change.  Thus, 
according to the definition of the state equation, if the predictive 
value of acceleration was τ, the state equation of the system, (hR, aR, 
vG), should be: 
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  (5) 

Equation (4) and (5) were required to be respectively dispersed 
for the AKF.  

In terms of the measurement equation, the discrete format was: 
Wk = AkYk + Qk                  (6) 

For the state equation, the discrete format was: 
Yk = λk,k–1Yk–1+ ξk–1Gk–1               (7) 

where, Yk was the state vector sequence; Wk was the measurement 
sequence; Gk–1 and Qk were the white noise with zero mean; λk,k–1 
was the state transition matrix; ξk–1 was the system noise driving 
matrix and Ak was the measurement matrix. 

In addition, Equation (6) and (7) must satisfy the following 
conditions: 
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where, Hk was a nonnegative definite matrix; Uk was a positive 
definite matrix; σkj was Kroneker function, σkj = 1, when k is not 
equal to j.  

If the flight time of the UAV is t, then the state transition 
matrix, λk,k–1, the system noise driving matrix, ξk–1, and the 
measurement matrix, Ak can be obtained by Laplace transform of 
Equation (6) and (7).  The results should be: 
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Therefore, the temporal values of the elements in both the state 
vector sequence, Yk, and the measurement sequence, Wk, can be 
determined, which will be the basis of the AKF in the temporal 
dimension.  According to the equation (6) and (7), One-step 
prediction equation can be obtained: 

1) If the optimal estimation of k–1 time, Yk–1, and the priori  

estimate of k time was Yk/k–1, the one-step state prediction equation 
should be: 

Yk/k–1 = λk,k–1Yk–1                (10) 
2) Assuming the covariance matrix of prior estimate of k–1 

time was Pk–1, and the covariance matrix of optimal estimation of k 
time was Pk/k–1, and the process noise matrix was Zk–1, the one-step 
prediction mean square error matrix should be: 

Pk/k–1 = λk,k–1Pk–1λT
k,k–1+ Zk–1            (11) 

Then, based on the equation (10) and (11), the estimating 
equation can be obtained.  Assuming the forgetting factor is b, the 
weighting coefficient, dk: 

dk = (1 – b)/(1 – bk)                 (12) 
According to the equation (6) and (7), if the residual was νk, so 

the residual calculation equation should be: 
vk = Wk – AkYk–1                  (13) 

Based on the equation (12) and (13), the estimated 
measurement noise covariance, Rk, should be: 

Rk = (1 – dk)Rk–1 + dk(vkvk
T – AkPk/k–1Ak

T)        (14) 
The equation (14), the estimated measurement noise 

covariance, Rk, have obtained, so the Kalman filter gain matrix, Kk, 
should be: 

Kk = Pk/k–1Ak
T(AkPk/k–1Ak

T
 + Rk)–1           (15) 

According to the equation (13) and (15), the state estimation 
equation, Yk can be obtained: 

Yk = Kk/k–1 + Kkvk                 (16) 
Based on the equation (7) and (14), the estimated mean square 

error equation, Pk, should be: 
Pk = (1 – KkAk)Pk/k–1                (17) 

Therefore, the one-step state prediction equation (10), the 
one-step prediction mean square error matrix (11), the Kalman 
filter gain matrix (15), the state estimation equation (16), and the 
estimated mean square error equation (17) have been obtained.  
The optimal estimation value of the altitude state can be gotten by 
using the above iterative equation. 
2.2.2  Asynchronous fusion of data 

In order to deal with the delay in data transmission, 
asynchronous fusion for the data from the MWR, IMU and GPS 
was developed.  In a fusion cycle, according to Equation (6), (7), 
(15), (16) and (17), the minimum mean square error of the data 
from each sensor can be obtained by the AKF.  Then, α and β can 
be obtained, α was the x-axis offset angle and β was the y-axis 
offset angle of the UAV.  In order to increase the accuracy of the 
altitude data during the fusion, the altitude by the MWR, Hm, was 
modified based on flight angle.  The modified altitude data, HM, 
should be: 

HM = Hmcosαcosβ               (18) 
Based on the equation (18), the covariance and Kalman filter 

gain matrix of the modified altitude data, HM, and the data of the 
GPS can be obtained by the AKF.  Meanwhile, the optimal 
updated value of each sensor can be determined and fused. 

According to the data fusion and filtering based on the AKF, 
the altitude between the UAV and crop, Hactual, can be obtained.  
Assuming the altitude between UAV and ground was Hrelative.  
Therefore, the height detection of crop, Hcrop, should be: 

Hcrop = Hrelative – Hactual               (19) 
Then, the altitude data between UAV and crop by the MWR 

was Hmactual, which was raw data before the algorithm processing, 
and the crop height of the MWR, Hmcrop, should be: 

Hmcrop = Hrelative – Hmactual             (20) 
Based on the equation (19) and (20), the crop height after the 

algorithm processing, Hcrop, and the crop height before the  
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algorithm processing, Hmcrop, can be obtained. 
2.2.3  Simulation of the data fusion algorithm 

In order to indicate the accuracy of the algorithm, the 
simulation experiment of UAV flight altitude was established in 
MATLAB (MathWorks, Inc, America).  Based on the pre-tests of 
the sensors during UAV flying, the measurement error of the MWR 
was set as 10 cm and that of the GPS was set as 0.5 m.  
Meanwhile, the variance of actual acceleration was set as      
0.01 m2/s4.  The UAV was set as: 

hr = 200 + 10sin(0.1t)              (21) 
Meanwhile, the relation between the velocity, and the flight 

time of the UAV, t, was: 
vg = cos(0.1t)                  (22) 

Moreover, the relation between the acceleration and the flight 
time of the UAV, t, was: 

ar = –0.1sin(0.1t)                (23) 
Figure 4 showed the error of altitude measurement by the 

simulation.  It is obvious that although continually changing, the 
error was within 2 cm, which indicated that the altitude data 
processed by the algorithm was closer to the actual value, so the 
data fusion algorithm was effective. 

 
Figure 4  Error of altitude measurement 

 

2.3  Trial scheme 
2.3.1  Test site and devices 

A corn field (Figure 5a) in Tongzhou, Beijing, was selected as 
the test site, with the corn at the seedling growth stage on April 25, 
2019.  Table 2 showed the devices and materials used in the tests, 
including a DJI Phantom 3 drone with a height detection system 
(Figure 5b), a computer and an altitude sign (Figure 5c).  The 
altitude sign consisted of several 1m long components. 

 

Table 2  The devices and materials 

Devices Model Quantity 

UAV DJI Phantom 3 1 

MWR NRA24 1 

IMU JY901 1 

Global Positioning Unit ATK-S1216F8-BD 1 

Microcontroller STM32F103 1 

Digital Transmission Radio XROCK V3 1 

Altitude Sign  15 
 

2.3.2  Trial design 
To verify the detection accuracy of the system, the height 

detection of corn trials was conducted.  In order to ensure the 
accuracy of the trial, each group of the test was conducted three 
times.  The following paces were implemented: 

The DJI Phantom 3 was equipped with the height detection 
system.  In Figure 6.  Two flight altitudes from the ground, 5 m 
and 10 m, were set.  Altitude was determined by the UAV control 
system and the altitude sign.  In addition, the UAV flew slowly 
and steadily on the corn plants for 3 minutes.  In the trial, 15 

sample points on the UAV flight path were selected.  Manually 
measuring the corn height of each sample point to obtain the true 
height, Ht.  The altitude between UAV and ground was Hrelative. 

Therefore, comparing the true value, Ht, the height from the 
system, Hcorn, and the height from the MWR, Hmcorn, were 
compared to verify the accuracy of the system of height 
measurement. 
 

 
a. Test field 

 

 
b. The height detection system and UAV 

 

 
c. Altitude sign 

Figure 5  Test site and devices 
 

 
1. Corn plant  2. The UAV  3. The height measurement system 

Figure 6  Test scheme 

3  Results and discussion 

3.1  Analysis of accuracy  
The data from the MWR, the IMU and the GPS was processed 

by the algorithm based on the AKF.  Figure 7 and Figure 8 show 
the variation of the altitude measured by the system. 

The blue scatter line was the non-processed data, which was 
the raw data of the MWR, while the red solid line was the 
processed data.  It was showed that the data was smoother after 
processing and sharp points were weakened.  According to the 
two curves, the algorithm had removed the fluctuating noise of 
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each sensor and the high distortion.  For example, as showed in 
Figure 8, for the horizontal distance between 1600 and 1800 cm, 
there were three data with severe distortion.  When the flight 
altitude was at 10m, the noise of each sensor was eliminated.  
Therefore, the error had been significantly improved.  The data of 

15 sample points was fitted by the polynomial fitting model in 
MATLAB (MathWorks, Inc, America), which can accurately 
compare the errors before and after utilizing the algorithm.  The 
flight altitude of 10m was taken as an example.  Figures 9 showed 
the residual errors. 

 
Figure 7  The corn height detected when the UAV flying at 5m from the ground 

 
Figure 8  The corn altitude detected when the UAV was at 10m from the ground 

 

 
Figure 9  The residual errors of data processed by the algorithm 

 

For the data processed by the algorithm, it showed that the 
residual error was concentrated within ±1 cm, close to zero.  It 
indicated that the error of the processed data was significantly 
reduced.  The degree of fitting was high, and it was more in line 
with actual situations.  As showed in Table 3, the corn height 
value was took the average value when the flight altitude at 5 m 
and 10 m from the ground, and compare with the true corn height, 
Ht, the error value can be obtained. 

The data processed by the algorithm, Hcorn, was compared with 
the true crop height, Ht, and the error was maintained at 0.018 m.  
The raw data, Hmcorn, compared with the true crop height, Ht,, the 
error was 0.053 m.  The error of the data processed by the 
algorithm was reduced by 0.035 m compared with the data before 

processing.  It could be concluded, the data processed by the data 
fusion algorithm, the corn height detection accuracy can greatly 
improve. 

The Figure 10 showed the error of the 15 sample points.  The 
height error was between 2 cm and 15 cm before processing, while 
that was between 0.2 cm and 4 cm after processing.  Meanwhile, 
the average error of the corn height processed by the data fusion 
algorithm was 1.7 cm, and the standard deviation was 12 cm.  
Some deviations were in the corn altitude because the corn were 
disturbed by the downstream field of UAV.  The deviations could 
be significantly improved after the data fusion, and the maximum 
error was reduced to 4cm, about 80% off.  Furthermore, the 
algorithm of crop height detection for the UAVs in flight could 
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effectively minimise the noise. 
 

Table 3  The corn heights before and after the algorithm 
processing 

True corn 
height,  
Ht /m 

Corn height  
before algorithm 

processing,  
Hmcorn /m 

Error between 
Ht and Hmcorn

/m 

Corn height  
after algorithm 

processing,  
Hcorn /m 

Error between 
Ht and Hcorn 

/m 

0.620 0.536 0.064 0.614 0.006 

0.620 0.675 0.655 0.610 0.010 

0.880 0.922 0.042 0.868 0.002 

1.130 1.188 0.058 1.116 0.004 

1.000 0.902 0.098 1.025 0.025 

1.280 1.425 0.145 1.255 0.025 

1.630 1.664 0.034 1.648 0.018 

1.920 1.947 0.027 1.899 0.021 

1.720 1.647 0.073 1.694 0.026 

1.800 1.877 0.077 1.836 0.036 

1.800 1.769 0.031 1.823 0.023 

1.500 1.456 0.044 1.478 0.022 

1.640 1.665 0.025 1.650 0.010 

1.840 1.768 0.072 1.825 0.015 

1.810 1.797 0.013 1.794 0.016 
 

 
Figure 10  The errors of corn height 

 

3.2  Discussion 
In this paper, the theory research and system design of crop 

altitude accurate detection system based on the AKF was carried 
out.  According to improve the height detection algorithm, the 
noise of the sensors was filtered.  In order to deal with the delay in 
data transmission, asynchronous fusion for the data from the MWR, 
IMU and GPS was developed.  The data error from the unstable 
flight of UAV was corrected by the flight angle from the IMU.  
The results showed that the crop height detection system have a 
high measurement accuracy.  The system of crop height detection 
of UAVs obtain the data and store in the computer.  In the 
seedling stage, the crop height data can be stored and sorted out by 
building a database.  Meanwhile, the database can be used to 
analyse the growth process of crops and the utilization rate of 
pesticides and yield growth of crops have a greatly improve and 
reform. 

The core of crop height detection system is the detection of 
UAV flight altitude.  The current commercial spray drones are 
generally driven by manual operation, and the flying altitude of the 
UAV cannot be accurately detected in real-time.  In the next stage, 
the altitude between the UAV and the crops can be connected with 
the UAV flight control system.  Terrain-mimetic flight of the 
UAVs can be realized, and the utilization rate of pesticides will be 
improved. 

4  Conclusions  

This paper developed a crop height detection system based on 
the MWR and corresponding data fusion algorithm based on the 
AKF was proposed.  Simulation tests and field trials were 
respectively conducted.  The conclusions are: 

1) Simulation test illustrated that the error of height was within 
2 cm and less than 10 cm, the purpose of system design was 
achieved, which demonstrated the feasibility of the system. 

2) Field trials identified that compared with the raw data by the 
MWR, the error of detection system was reduced by 0.035 m.  
Compared with real crop heights, the error of detection system was 
0.02 m.  The developed system could achieve the accurate 
detection of the crop height.  The system and algorithm provide a 
new theoretical model and technical idea for the UAVs configured 
for plant-protection. 
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