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Abstract: In this paper, a localization and navigation guidance algorithm based on the tree row in orchards for agricultural 
robots was proposed.  In this algorithm, the tree rows formed by the trunks of parallel planting grape trees were used as 
auxiliary information.  Together with the relative position provided by IMU, odometer and 3D LiDAR, the proposed algorithm  
was used to calculate the position and orientation of the moving robot.  Firstly, the coordinates of the robot were obtained by 
the vehicle positioning system, and then the orientation of the tree and the posture of the robot relative to the tree row were 
determined through the 3D LiDAR point cloud, to ensure that the robot can parallel walk along the tree row and maintain a 
specific distance.  Finally, the odometer, IMU data and LiDAR point cloud image were deeply fused to determine the accurate 
position and orientation to complete the path planning in the orchards.  Experimental results show that the algorithm can 
effectively improve the positioning accuracy of the robot walking in the orchard and ensure that the robot can walk along the 
tree row without hitting the trees. 
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1  Introduction  

Orchards require a great deal of maintenance throughout the 
year, pruning, bloom thinning, spraying for insects and disease, and 
mowing the grass between the trees[1].  These activities make up a 
significant portion of operating expenses and improvements in 
efficiency can directly improve a vineyards productivity.  More and 
more professional farmers recognize the potential of automation to 
reduce chemical exposure to their employees during spraying and 
help reduce the logistical difficulties of finding sufficient, skilled, 
seasonal labor.  

In recent years, autonomous agriculture equipment has become 
more and more feasible with the development of navigation 
technologies including Micro-Electro-Mechanical System 
(MEMS)[2], Global Navigation Satellite System (GNSS)[3], Artificial 
Intelligence (AI) and so on.  The GNSS receiver with multi-system, 
multi-band and Real-time Kinematic (RTK)[4] can improve the 
positioning accuracy to be several centimeters in the open field.  
Except that, the cost of the GNSS-RTK system is lower and lower 
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with the development of network RTK.  Consequently, many 
researchers put their attention on autonomous agriculture vehicles, 
especially on precision localization and automatic guidance.  

However, the limitation of GNSS-RTK is also introduced huge 
positioning errors in Non-Line-of-Sight (NLOS)[5] environments 
since of the refraction and diffraction during the satellite signal 
propagation, such as in the orchards and during cloudy days[6].  
Spatial information collected by Inertial Measurement Unit (IMU), 
3D LiDAR[7] and RGB-D[8] camera is required to localize the 
agricultural vehicles as accurate as possible.  

On most scenarios, agriculture robots are required to move in 
straight line and constant turning trajectories to cover all the target 
field.  From the kinematics point of view, it can be decomposed as 
constant velocity (CV) and constant turning (CT) movement in the 
orchards.  For constant velocity movement, autonomous row 
following has become a popular research area especially in 
agriculture application because of the standardized planting 
model[9-18].  The task consists of detecting a pathway for an 
agriculture vehicle to follow, using environmental sensors 
including 3D LiDAR, IMU and camera.  For constant turning, it is 
still a research problem with difficulty. 

Here, we address the problem of row following guidance for 
autonomous vehicles in orchards.  A monocular camera is adopted 
to detect the crops planted in straight rows using Hough transform 
proposed by Astrand and Baerveldt in[19].  Satow also used Hough 
transform to detect the crop rows from 3D point cloud perceived by 
a laser scanner through a rotating mirror[20].  Biber also proposed a 
row following based navigation system using data collected from 
GNSS-RTK, an inertial sensor, a LiDAR and odometry[21].  Still 
other research results have been proposed in these references[22–27].  

In these proposed algorithms, only the CV moving model is 
considered while the CT moving model is missing.  But in actual 
applications, the CT moving model is as important as the CV 
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moving model.  To overcome this weakness, we proposed a  
navigation algorithm considering both CV and CT moving models 
as a whole.  

The objective of this research is to develop an autonomous 
navigation controller with vehicle positioning system consisting of 
multi sensors.  The controller can provide global navigation path 
and local navigation path with multi-sensors.  The LiDAR point 
cloud is registered by vehicle motion measured by wheel encoders 
and IMU.  Then the point cloud is fitted into two parallel straight 
lines based on Least Square (LS) regression algorithm.  The 
straight lines are integrated into an Extended Kalman Filter 
(EKF)[28] to reduce the line fitting noise.  To follow the tree rows 
with a constant offset to one side of the trees, we also detect the 
closest tree trunk to the vehicle each side.  After that, the 
controller also handles the situation of the end of tree row by 
hypothesis test algorithm to verify the vehicle is moving along the 
tree row or moving at the end of the tree row.  While the vehicle is 
moving along the tree row, the CV moving model is adopted.  
While the vehicle is close to the end of row, the CV moving model 
is adopted.  The simulation and experimental results are 

demonstrated that the proposed algorithm improved the navigation 
accuracy to 2-5 cm during the whole path with both straight-line 
and turning.  

The rest of the paper is organized as follows.  Section 2 
describes the moving modes employed in this paper to guide the 
vehicle to move in the vineyard.  Section 3 gives a detailed 
description of the proposed navigation controller and algorithms 
used in this paper.  Section 4 describes all the experiments 
implemented in the vineyard and evaluated the experiments result 
with Stanley algorithm.  Section 5 draws the conclusion of this paper. 

2  Problem statement 
From the robot point of view, the problem addressed in this 

paper is to detect the tree row and to guide the robot to go straight 
with constant velocity mode in between the tree row with a certain 
range to each side of the tree row.  Except that, the beginning and 
the end of the tree row are also required to be detected by the 3D 
point cloud to guide the robot to change from one tree row to another 
with constant turning model as shown in Figure 1 and Figure 2, 
respectively. 

 
Figure 1  Problem statement.  Ll and Lr are two parallel straight lines representing the tree rows, Xl and Xr are two points 
representing the centers of the closest tree trunks on both sides of the vehicle.  Our task consists in detecting Ll, Lr, Xl, and 

Xr from the LiDAR point cloud in coordinate {x, y, z} 
 

 
Figure 2  Problem statement.  Ll and Lr are two parallel straight 

lines representing the tree rows, Xl and Xr are two points representing 
the centers of the closest tree trunks on both sides of the vehicle.  

Our task consists in detecting Ll, Lr, Xl, and Xr from the LiDAR point 
cloud in coordinate {x, y, z} 

2.1  Dynamic models 
Here we assume that the autonomous vehicle is moving with a  

Constant velocity model and coordinated  turning are as shown in 
Figure 2.  The  state  of  the  vehicle  at  time  step  k, k  ∈ 
Z+,  is  denoted  as       [ ]T

k k k k kx y x y=x , 
where, (xk, yk) is the instantaneous position and ( kx , ky ) is the 
instantaneous speed, respectively. 

Under CV model, the following equations can be used to 
describe its evolution over time: 

1 1k k kx x x T− −= +                        (1) 
where,  xk  is  the  position  of  a  moving  target,  x˙  is  the  
velocity  of  the  target  and  T   is  the  time interval.  
Considering a target moving in a 2 − D plane, the state vector can be 
organized as       [ ]T

k k k k kx y x y=x , and the state-space evolution 
can be rewritten as: 

1k −= kx Fx                          (2) 
where the transformation matrix F is: 

1 0 0
0 1 0
0 0 1 0
0 0 0 1

T
T

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

F

 

                    (3) 

When the target is moving in a urban environment, the 
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state-space evolution equation (2) is organized as: 
k −= +k 1 kx Fx v                        (4) 

where, vk is a Gaussian distributed process noise.  
Under CT model, the evolution equations of the autonomous 

vehicle’s velocities are: 
cosk k kx s φ=

 
                      (5) 

sin $k k ky s ϕ=                        (6) 
where, kx  and ky

 
are the velocity components corresponding to 

x and y directions, 2 2
k k ks x y= +

 

is the target’s speed and kφ
 
is 

the heading angle.  
The turning rate equals to the first derivation of the heading 

angle: 

k kω φ=                           (7) 
Considering constant turning model, the turning rate is fixed: 

1k kω ω −=                          (8) 
The equations describing the evolution the x position and 

position y with constant ωk are: 
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where, (xk, yk)  is the position of the target; T is the time interval 
between the step k − 1 and the step k. 

Similarly, as these position evolution equations, the speed 
evolution equations are: 

1 1 1

1 1 1 1
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cos( ) sin( )
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x s T
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φ ω
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Defining the state vector       [ ]T
k k k k kx y x y=x

 

introducing the 
process noise vector v, the state transition equation of the dynamic 
system is: 

1 1( )k k k− −= +x f x v                             (13) 
where, fk is the nonlinear function: 
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2.2  Stanley method 
To evaluate the performance of the autonomous vehicle, the 

cross-track error e(t) and the angle of those wheels with respect to 
the nearest segment of trajectory are introduced. 

The Stanley method is a nonlinear feedback function of the 
cross-track error e(t), measured from the center of the front axle to 
the nearest path point (px, py).  Co-locating the point of control with 
the steered  front wheels allows for an intuitive control law, where 
the first term simply keeps the wheels aligned with the given path by 

setting the steering angle δ equal to the heading error. 
The heading error is calculated by Equation(15). 

e pθ θ θ= −                       (15) 

where, e is the lateral error; θ is the heading of the vehicle and θp is 
the heading of the path at (px, py).  When e is zero, the direction of 
the front wheel deflection angle is consistent with the direction of 
the tangent of the given path.  When e is non-zero, the second term 
adjusts δ such that the intended the path tangent from (px, py) at kv(t) 
units from the front axle.  Figure 3 illustrates the geometric 
relationship of the control parameters.  The resulting steering 
control law is calculated by Equation(16), 

( ) ( ) ( )
( )( ) arctan( )
( )
( )( ) arctan( )
( )

e e

e

e

t t t
e tt
d t
ke tt
v t

δ θ δ

θ

θ

        =

        +=

= +

+             (16) 

where, d(t) is the distance between the expected trajectory and the 
front axle; v(t) is the vehicle speed; k is a gain parameter.  It is clear 
that the desired effect is achieved with this control law: As e 
increases, the wheels are steered further towards the path. 

 
Figure 3  Stanley method geometry 

 

Using a linear bicycle model with infinite tire stiffness and tight 
steering limitations results in the following effect of the control  
law, 

( ) ( )sin ( )ee t v t tδ= −               (17) 
where, sinδe(t) can be seen from the geometric relationship: 

 
2 2 2 2

( ) ( )sin ( )
( ) ( ( )) ( ) ( ( ))

e
e t ke tt

d t e t v t ke t
δ = =

+ +
     (18) 

Therefore, Equation (17) can be simplified to Equation (19). 

2 2
2

( ) ( ) ( )( )
( )( ) ( ( )) 1 ( )
( )

v t ke t ke te t
ke tv t ke t
v t

− −
= =

+ +
        (19) 

When the lateral tracking error e(t) is very small, that is, 

2( )( )
( )

ke t
v t

 

converges to 0, the Equation (19) can be further simplified 

to Equation (20). 
( ) ( )e t ke t≈ −                   (20) 

Under the integral equation, the lateral tracking error is 
calculated by Equation(21). 

( ) (0) exp kte t e −≈ ×                 (21) 
Thus, the error converges exponentially to e(t)=0.  The 

parameter k determines the rate of convergence.  As cross-track 
error increases, the effect of the arctan function is to turn the front 
wheels to point straight toward the trajectory, yielding convergence 
limited only by the speed of the vehicle.  For any value of e(t), the 
differential equation converges monotonically to zero.  
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3  Materials and methods  

3.1  System
 
overview 

A robot with multi-sensor positioning system is employed to 
verify the algorithm proposed in this paper.  The multi-sensor 
positioning system consists of a 64 channels 3D LiDAR, which has 
a vertical field of view of 45 degrees with 2.8 degrees resolution 
and 10 Hz frame rate, an IMUS and an odometer.  Encoder and 
IMU data are used to verify the 3D point cloud information.  The 
detailed information of three-dimensional radar, odometer and 
other sensors are shown in Table 1. 

 

Table 1  Detailed information of three-dimensional radar, 
odometer and other sensors 

 Parameter Value 

Precision ±0.7-5 cm 

Frequency 10 Hz 

Detection distance 120 m 
Lidar 

Horizontal resolution 1024 

Roll and pitch accuracy 0.25° 

Heading accuracy 1° IMU 

Frequency 100 Hz 

Resolution 1000P/R 
Encoder 

Frequency 100 Hz 
 

The experiment was conducted in a standardized vineyard in 
Zibo, Shandong Province.  Weeds and vines in the vineyard are 
regularly pruned, so Robot Perception and navigation are not 
affected.  In order to facilitate the robot to have good traffic 
capacity in special environment such as muddy environment, the 
robot was designed with crawler chassis and driven by stepping 
motor. 

Considering that the grapevine stalk point cloud above 0.5 m 
from the access road is relatively clean and less affected by weeds.  
The lidar was installed in the middle of the front end of the robot 
chassis, with a height of about 1.0 m from the ground, to adopt 
point cloud data more than 0.5 m from the ground. 

The autonomous navigation system, worked as the main 
processor part of the robot, is used to process the 3D LiDAR cloud 
point information, to implement the navigation algorithms, and to 
manage the navigation information.  The architecture of the 
navigation system is shown in Figure 4.  The navigation controller 
is composed of a main processor NVIDIA Jetson AGX Xavier and 
an auxiliary processor embedded STM32F429 micro-controller. 

 

 
Figure 4  The robot collects three-dimensional point clouds in the 

vineyard 
 

The main processor AGX is used to run the Robot Operating 
System and 3D point cloud processing algorithms.  The main 
processor is also used to connect to the LCD screen and the 

keyboard.  The auxiliary processor is used to control the motors, to 
read the encoder data.  Serial port is used to communicate in 
between the main processor and the auxiliary processor. 

Multiple sensors are synchronized based on the time of the 3D 
LiDAR.  When the controller obtains the LiDAR data through the 
network port, the odometer data of other sensors under the   point 
cloud time is obtained by linear interpolation.  The point cloud is 
registered by odometer data, and then the point cloud registration is 
optimized by Normal-Distribution Transformation (NDT).  Then 
two lines are fitted by Random Sample Consensus (RANSAC) 
method based on the least square method, and the lines are filtered 
by EKF algorithm with the odometer calculated before as the input 
value.  The software architecture and the data process are shown in 
Figure 4 and Figure 5, respectively. 

 
Figure 5  Multi-sensors data fusion 

 

3.2  Multi-sensor data fusion 
To use the information collected by different sensors, the 

multi-sensor data fusion is implemented at the very beginning of 
the process.  Then the point cloud information is used to get the 
tree row.  Finally, the robot trajectory is determined.  The data 
processing algorithm is shown in Figure 6. 

 
Figure 6  Data processing algorithms 

 

The data of odometer is provided by IMU, encoder and RTK 
equipment.  The output data of IMU has been filtered, and the 
data is relatively stable and reliable.  To ensure the stability of 
IMU data on the bumpy ground in the field, the Marwick algorithm 
is used to filter again.  The encoder data is the measured value of 
the driving wheels on both sides of the differential drive.  Based 
on the differential motion model, the original odometer data is 
calculated with the encoder data. 

Considering that the radar works at 10 Hz, IMU and encoder 
work at 100 Hz.  Taking the radar data receiving time as the 
standard, the IMU and encoder data at the same time through the 
time-synchronizer function to solve the problem of data loss caused 
by multi-sensor fusion. 

The original odometer will be affected by wheel slip and 
friction, and the positioning accuracy of RTK will be reduced due 
to the influence of environment, while the IMU data will have a 
long time drift accumulation.  Therefore, the three-odometer data 
with better stability and more accurate data can be obtained through 
EKF fusion.  The odometer track tested in the vineyard after 
fusion is as shown in Figure 7. 

The output data of LiDAR includes ground point cloud, 
environmental noise, etc, in which ground point cloud is not only 
useless, but also affects the straight-line fitting effect.  
Considering the height of ground weeds and tree trunk, the point 
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cloud above 0.5 m on the ground is taken as the input point cloud 
of straight-line fitting.  Firstly, the point cloud is passed through 
the current odometer difference Δk for conversion as follows: 

Pk = RPk + T                   (22) 
 

 
Figure 7  Point cloud of the vineyard at Zibo City of Shandong 

Province in China 
 

3.3  Tree row detection algorithm 
To depict the actual environments of the vineyard with grape 

trees in the tree row, an extracted deal picture is shown in Figure 1.  
As shown in Figure 1, L1 and Lr stand for tow horizontal, parallel 
lines in the vehicle coordinate system on the left and right sides of 
the vehicle, respectively.  X1 and Xr stand for centers of the tree 
trunks closest to the vehicle on left and right side, respectively.  

The information about the 3D point cloud is processed by a 
RANSAC algorithm to yield the supporting lines of the tree rows.  
Ll and Lr are represented as, 

1

r

:
:

l

r

L y ax b
L y ax b

= +
= +

                (23) 

where, a, bl and br are the line coefficients.  To determine these 
coefficients, a Least Square Line Regression (LSLR) algorithm is 
used to process these cloud point data. 

The algorithm is summarized as follows. 

 
To detect when to close to the end of tree row, hypothesis tests 

are incorporated into the navigation algorithm.  At the very 
beginning of each tree row, two hypotheses are proposed as follows 
to test the number of the cloud point to identify whether the robot is 
close to the end of the tree row. 

0 1

1 1

:  | |
:  | |

k k CONST

k k CONST

H N N N
H N N N

−

−

− ≤
− >

            (24) 

where, Nk is the number of cloud point in a certain range with 3 m 
wide around the robot.  If hypothesis H0 is correct, it indicates that 
the robot is running in the tree row but not close to the end, 

otherwise, the robot is close to the end of the tree row.  When the 
robot is close to the tree row, another two hypothesis tests are 
proposed as follows: 

0

1

:  0
:  0

k

k

H N
H N

>
→

                (25) 

the number of cloud point in a certain range with 0.1 m wide 
around the robot is used as the resolution.  If hypothesis H0 is 
correct, it indicates that the robot is running close to the end, 
otherwise, the robot is to the end of the tree row. 

4  Results and discussion 

To verify the 3D perception algorithm proposed in this paper, 
experiments are implemented in the vineyard.  3D point cloud 
data are collected by a 64-channel Ouster 3D LiDAR.  Details of 
the experiments are described in this section.  To test the tree row 
detection algorithm, the robot was controlled to move along the 
centerline of tree row with a speed of 1 m/s.  The average 
positioning error is within 5 cm in a 260 cm wide row. 

Figure 8 shows an example of the detected tree row while the 
data is provided by 3D LiDAR sensor.  Off-line tests were 
conducted with data collected over 2 hours in one commercial 
vineyard in China. 

The 3D LiDAR is mounted on a remote control robot with 
constant velocity 1 m/s.  An example of the results obtained is 
shown in Figure 8.  Three different parts of the tree row is 
selected to verify the results.  Each of the straight-line fitting is 
run more than 1000 times.  The root mean square error (RMSE) is 
summarized as shown in Table 2. 

From Table 2, it can be seen that the calculated experimental 
mean of the parameters of each piece of the straight under different 
position of the tree row is very close to the true position of the tree 
row.  The RMSE of the distance between the true value and the 
calculated value to the central line   of the tree row is not greater 
than 0.2 cm which is negligible for the moving robot. 

Taking the vineyard scene as an example, the walking 
trajectory is generated by using the 3D LiDAR point cloud data and 
attitude sensor data in the process of robot navigation.  The 
experimental navigation effect is shown in Figure 9a. 

Table 3 shows the results of lateral error and heading error 
during the test.  It can be seen from Table 3 that in the navigation 
test, the variance of lateral error is 0.00049 m, the standard 
deviation of lateral error is 0.022 m, and the absolute average value 
of lateral error is 0.0186 m.  In the navigation test, the variance of 
heading error is 5.81°, the standard deviation of heading error is 
2.41° and the absolute average value of heading error is 1.54°. 

The lateral error of the navigation track in the test is shown in 
Figure 9b, and the heading error is shown in Figure 9c. 

The small amplitude oscillation of the test track in Figure 9b is 
due to the large vibration of the robot chassis affected by the terrain, 
which makes the lidar located on the chassis vibrate slightly, 
resulting in measurement error.  The large amplitude oscillation in 
Figure 9c is due to the small differential coefficient and insufficient 
damping during PID control navigation, resulting in no rapid 
stabilization in the oscillation.  At the same time, due to the 
absence of piecewise PID control and the navigation control is not 
fine enough.  In the follow-up research, the method of installing 
PTZ and segmented PID control will be used to solve the above 
two vibration problems. 

The test results in Figure 9 and Table 2 show that the 
localization and navigation guidance algorithm based on the tree 
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row in orchards proposed can make the robot trajectory evenly 
distributed along the midline, and tend to be stable.  The 
algorithm basically meets the requirements of inter row 
autonomous operation. 

Figure 10a shows the original point cloud data.  The data 
0.5-1.3 m high from the ground in the original point cloud data was 
intercepted as the turning detection data, as shown in Figure 10b.  
During automatic route tracking and navigation, the unmanned 

vehicle continuously detects the number of point clouds n on the 
left and right sides in the range of 3 m to 5 m ahead.  When n < 30, 
the unmanned vehicle is considered to have detected the end and 
began to plan the turning route, and the left and right turning 
actions are carried out alternately.  In addition, considering that 
the row spacing of vines in the experimental site is about 3 m, the 
fixed turning radius was set as 1.5 m.  The point cloud effect of 
unmanned vehicle turning test is shown in Figure 10c. 

 

 
a. Cloud points b. Cloud points after classification 

  

c. Left side of the tree row d. Right side of the tree row 
 

Figure 8  Cloud points in the vineyard and the tree row extracted from the cloud point 
 

Table 2  Root mean square error of each piece for tree row in the vineyard 

 Random trajectory, cellular network 

Algorithms Right Slope Right Intercept Right Distance Left Slope Left Intercept Left Distance 

At the starting point of the tree row 
Average 

–0.008780 2.248745 2.243300 –0.037167 –2.031682 2.032948 

RMSE 0.04345 0.097 0.0977 0.0242 0.0613 0.0604 

At the middle of the tree row 
Average 

–0.036904 1.350937 1.350937 –0.048399 –1.707660 1.705493 

RMSE 0.039 0.091 0.091 0.063 0.1076 0.107 

At the end of the tree row 
Average 

–0.009662 1.339421 1.338286 –0.003152 –1.540490 1.538952 

RMSE 0.0404 0.1052 0.1054 0.044 0.1407 0.1403 
 

 

Table 3  Test error statistics 

 Error statistics 

Parameter Lateral error Heading error 

Variance 0.00049 m 5.81° 

Standard deviation 0.022 m 2.41° 

Absolute values of means 0.0186 m 1.54° 
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a. Path of the navigation 

 
b. Lateral error  c. Heading error 

Figure 9  Robot walking trajectory and cross tracking error 
 

a. Raw point cloud data b. Turn detection data 

 
c. Planned turning route 

 

Figure 10  Robot turning test 
 

5  Conclusions  

This paper has proposed a novel navigation algorithm based on 
the tree row in the vineyard.  The LS has been used to estimate the 
pseudo-measured direction of a moving robot from 3D point cloud 
collected by the 64-channel LiDAR.  As the Kalman filter is also 

implemented to track the estimation of the straight line’s slope.  
The proposed algorithm has outperformed some state-of-the-art 
algorithms in terms of accuracy, particularly in situation where the 
NLOS condition is severe.  We have also verified the 
effectiveness of the proposed tracking algorithm by simulations.  
Moreover, it has also been shown by simulations that the proposed 
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algorithm is computationally efficient.  Future work will be on the 
more challenging area of extending the current algorithm for other 
conditions. 
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