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Abstract: Nitrogen and phosphorus play an important role in the growth and development of crops, and the accurate acquisition 
of information on crop nitrogen and phosphorus nutrient levels is of great significance in terms of accurate crop management 
and saving planting costs.  To address the problem that previous single-element monitoring has led to difficulties in synergy 
between inversion models, this paper proposes a method based on a whale algorithm with an extreme learning machine to 
achieve synergistic inversion of nitrogen and phosphorus content in rice, and demonstrates the feasibility of using spectral data 
to invert nitrogen and phosphorus simultaneously.  In this paper, an unmanned aircraft hyperspectral remote sensing platform 
was used to acquire hyperspectral remote sensing images of the canopy of japonica rice at key fertility stages, and agronomic 
information was sampled simultaneously on ground.  The hyperspectral data were downscaled by principal component 
analysis (PCA) and discrete wavelet multiscale decomposition (DWT), and the filtered feature vectors were used as input and 
the measured nitrogen and phosphorus content as output.  Two models, the limit learning machine and the limit learning 
machine based on the whale algorithm, were used to collaboratively estimate the nitrogen and phosphorus content of japonica 
rice at critical fertility stages, and the following conclusions were drawn: 1) The inversion accuracy of both models for nitrogen 
The R2 of the training set was above 0.64 and the R2 of the validation set was above 0.56.  2) The dimensionality reduction 
method using wavelet decomposition was more representative than that of principal component analysis in filtering feature 
vectors, and it was the best for phosphorus inversion.  3) Overall, the WOA-ELM model was better than the ELM model in 
estimation, with the R2 of nitrogen inversion reaching up to this model has greatly improved the efficiency of obtaining the 
nutrient content of rice leaves. 
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1  Introduction  

In agricultural production, nitrogen and phosphorus are 
important nutrients for the growth and development of food crops.  
Accurate information on the nutrient levels of nitrogen and 
phosphorus is important for precise crop management, saving 
planting costs and controlling farmland surface pollution.  The 
abundance and deficiency of nitrogen and phosphorus in rice are 
similar in appearance, both resulting in fewer tillers, smaller, 
thinner leaves and yellowish colour of the plant[1], which are 
difficult to distinguish morphologically by the naked eye and are 
very likely to confuse the judgement of nitrogen and phosphorus 
deficiency, thus affecting the fertilization decision[2]. 
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UAV hyperspectroscopy can rapidly and non-destructively 
capture the characteristics of the spectral changes of plants, thus 
reflecting the subtle changes of various substances in plants, thus 
achieving timely and rapid identification of nutrient stresses[2].  At 
present, scholars at home and abroad have done a lot of research on 
the use of UAV hyperspectral technology for rapid and accurate 
monitoring of crop nutrient information.  Among them, the 
research on nitrogen is relatively concentrated, and the spectral 
sensitive bands of nitrogen have been clarified[3], a number of 
spectral indices applicable to nitrogen diagnosis have been 
screened, and the spectral quantitative prediction equation of 
nitrogen content has been established[4].  Xu Tongyu[5] et al. 
constructed an inverse model of rice nitrogen content by optimizing 
the limit learning machine of the aspen whisker search algorithm 
based on the characteristic band spectra obtained from UVE 
screening.  Wang Jiaojiao[6] et al. found that the characteristic 
bands screened by using GPR were the best for nitrogen content 
model construction at the leaf and canopy scales of rice.  Yang 
Hongyun[7] et al. fed the spectral data processed by PCA and SPA 
into a support vector machine (SVM) to build a nitrogen content 
estimation model for rice, and the estimation accuracy reached 
99.38%.  There are relatively few studies on phosphorus, and the 
results obtained are not uniform and need further validation.  Ban 
Songtao[8] et al. used partial least squares regression to establish a 
model for estimating phosphorus content in rice.  Quan 
Dongping[9] et al. used wavelet denoising, linear regression and 
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partial least squares to establish a model for monitoring phosphorus 
content in citrus, and achieved good results.Osborne et al.[10] 
showed that the blue light band (440-445 nm) and the near-infrared 
band (730-930 nm) could be used to monitor the severity of 
phosphorus deficiency in maize in the early stages, while the later 
stages or high soil phosphorus concentrations were not suitable for 
phosphorus content diagnosis.  Based on mutual information 
theory, Lin Fenfang et al[11] derived five spectrally sensitive bands 
for phosphorus content of rice leaves at the nodulation stage and 
used them to build a better network model, demonstrating the 
feasibility of using mutual information theory to invert the 
phosphorus content of rice. 

Most previous crop nutrition tests have been established based 
on a single nutrient, but the identification and diagnosis of single 
nutrient deficiency symptoms cannot exclude changes in crop foliar 
characteristics caused by other nutrients, and the effects of multiple 
elements on rice growth and development are inextricably linked, 
with interactions between them[12].  Plant physiology also 
indicates that the uptake of nitrogen and phosphorus by rice is 
influenced by fertilization conditions, and there is an interaction 
and constraint between nitrogen and phosphorus[13-14].  In order to 
explore the influence of nitrogen and phosphorus interaction on 
rice canopy reflectance spectra and to avoid the problem of difficult 
synergy between inversion models for single element monitoring, 
this paper takes northeast japonica rice as the research object and 
uses an unmanned aircraft hyperspectral remote sensing platform to 
acquire hyperspectral remote sensing image information of the 
canopy of japonica rice at key fertility stages, with simultaneous 
ground sampling of agronomic information.  The inverse model of 
nitrogen and phosphorus content of japonica rice during the critical 
fertility period was established by using two methods, namely the 
limit learning machine and the limit learning machine based on the 
whale algorithm, to explore the feasibility of using spectral data to 
invert nitrogen and phosphorus simultaneously and its methods, 
with a view to providing a theoretical basis and method for the 
identification of nitrogen and phosphorus stress in field production, 
and at the same time providing scientific support for accurate rice 
The aim was to provide a theoretical basis and method for the 
identification of N and P stress in field production, and to provide 
scientific support for accurate fertilization decisions. 

2  Materials and methods 

2.1  Experimental design 
The experiment was conducted from June to September 2021 

at the precision agriculture aerial research base of Shenyang 
Agricultural University, Gengzhuang Town, Haicheng City, 
Anshan City, Liaoning Province (40°58'45.39"N, 
122°43'47.0064"E), and the experimental data were collected under 
good weather conditions in order to obtain effective remote sensing 
images of the japonica rice canopy.  The experimental field was 
divided into two large areas, with five N fertilizer gradients in 
Experimental Area 1 with N0=0 kg/hm2, N1=75 kg/hm2, N2=  
150 kg/hm2, N3=225 kg/hm2, N4=300 kg/hm2, and Experimental 
Area 2 with the same five N fertilizer gradients.  Again, five N 
fertilizer gradients were established, with N0=0 kg/hm2, N1=    
50 kg/hm2, N2=100 kg/hm2, N3=150 kg/hm2, N4=200 kg/hm2, and 
a N fertilizer basal chase ratio of 5:3:2, with three replications per 
gradient, for a total of 3×5 = 15 plots.  A total of 15 plots were 
established.  The area of each plot in Experiment 1 was 5×8=   
40 m2 and that of each plot in Experiment 2 was 660 m2.  The 

field management of the two experimental areas was the same 
except for the nitrogen fertiliser gradient.  The standard rate of 
potash application was 192 kg/hm2, with a 1:1 ratio of base to 
chase, and the rest of the field management was the same as 
conventional high-yield management.  Phosphorus fertiliser was 
not treated as the application of N fertiliser also had an effect on 
the phosphorus content of the plants.  Sampling in the field was 
carried out from the tillering stage to the tasseling stage, with a 
sampling interval of 9 days.  In each experimental plot, a 1 m×1 m 
plot was randomly selected and framed with a plastic frame for 
subsequent identification of the area of interest, from which three 
representative holes of rice were selected for obtaining N and P 
concentrations.  A total of 325 sets of samples were collected for 
the experiment. 

In order to avoid the impact of coarse errors generated during 
the experiment on the accuracy of the inversion, the outliers of the 
nitrogen and phosphorus content data measured in the experiment 
were removed by a 3-fold standard deviation method, while the 
abnormal spectral data were removed using the Monte Carlo 
algorithm to finally obtain a sample set of 312.  

 
Figure 1  Map of experimental plots 

 

2.2  Rice hyperspectral data acquisition  
The UAV hyperspectral platform of the M600 PRO six-rotor 

UAV from DJI Innovation Shenzhen was used.  The hyperspectral 
imager was selected from the GaiaSky-mini built-in 
push-and-sweep airborne hyperspectral imaging system from 
Sichuan Shuangli Hopper, with a hyperspectral band range of 
400~1000 nm, a resolution of 3nm and 253 effective bands.  The 
spatial resolution is 0.12 mm, the FOV is 31.34 °, the pixel spacing 
is 6.45 µm, and the lens diameter is 25 mm.  The UAV 
hyperspectral remote sensing platform data is collected daily from 
11:00 a.m. to 12:00 p.m., when the sunlight intensity is stable and 
the UAV flight altitude is set at 150 m.  The collected image 
information needs to be extracted from the cell hyperspectral data 
by ENVI5.3+IDL software, and the interfering feature spectra are 
removed by the method of wave angle filling.  The average 
spectrum of each plot is calculated by filling in the spectral angle of 
the interfering features, and the average spectrum of each plot is 
resampled by matlab software to improve the spectral resolution to 
1 nm, and the resampled spectral data is used as the hyperspectral 
information of each test plot.  The ENVI software was used to 
obtain the average rice spectral reflectance in the region of interest 
(ROI) of each plot, and used it as the rice canopy spectral 
reflectance of the plot. 
2.3  Acquisition of agronomic parameters in rice  
2.3.1 Determination of leaf nitrogen content 



December, 2022      Yu F H, et al.  Collaborative inverse modeling of nitrogen and phosphorus content in rice based on WOA-ELM      Vol. 5 No. 1   3 

 

About 20 leaves from different parts of japonica rice were 
collected from each test plot, placed in self-sealing bags, marked 
with plot name and number, and brought back to the laboratory 
immediately.  In the room, the leaves were first washed to remove 
unwanted substances such as dust from the surface of the leaves, 
then the samples were dried at 80°C to a constant weight after 
being killed at 105°C for 30 min and weighed and crushed.  
Finally the plant nitrogen concentration was measured by Kjeldahl 
method, calculated as follows. 

             (1) 

where, Nc is the sample nitrogen concentration (%); V is the 
volume of hydrochloric acid solution (mL) and M is the sample 
mass. 

The final statistical analysis of the 312 sets of effective 
nitrogen concentration data obtained resulted in the probability 
density histogram shown in Figure 2. 

 
Figure 2  Probabilistic density function of nitrogen content in 312 

groups of japonica rice leaves 
 

As can be seen from Figure 2, the 312 sets of japonica rice 
leaf nitrogen concentration data were normally distributed with a 
mean value of 3.3357/%, a maximum value of 6.801/% and a 
minimum value of 0.995/% with a standard deviation of 1.1732, 
which is suitable for inversion of nitrogen content.  The 
Kennard-Stone algorithm (KS) was also used to divide the samples 
into a 7:3 ratio for the training and test sets, and the statistical table 
of nitrogen concentrations is shown in Table 1. 

 

Table 1  Rice leaf nitrogen concentration statistics 
(%) 

Sample set Sample size Minimum set Maximum set Average Standard 
deviation 

Training set 218 0.995 5.863 3.4107 1.1312 
Test set 94 1.145 6.801 3.1617 1.2544 
Overall 312 0.995 6.801 3.3357 1.1732 
 

2.3.2  Determination of leaf phosphorus content 
To determine the phosphorus concentration of a sample, the 

previous procedure is the same as for the determination of the 
nitrogen concentration, except that the phosphorus concentration of 
the plant is measured by the vanadium-molybdenum yellow 
colourimetric method on the ground sample.  The calculation 
formula is as follows. 

          (2) 

where, C - the mass concentration of the colour developing solution 
P, μg/mL; C0 - Blank values, μg/mL; V - volume of colour 
developing liquid, mL; D - the fractionation multiple, i.e. the 

volume of disinfectant fixation (mL) / volume of disinfectant 
aspirated (mL); m - mass of dry sample, g. 

The final statistical analysis of the 312 sets of effective 
nitrogen concentration data obtained resulted in the probability 
density histogram shown in Figure 2. 

As can be seen from Figure 3, the phosphorus concentration 
data of 312 sets of japonica rice leaves were normally distributed 
with a mean value of 0.3242/%, a maximum value of 0.419/% and 
a minimum value of 0.214/%, with a standard deviation of 0.0446, 
meeting the requirements of nitrogen content inversion.  The 
Kennard-Stone algorithm (KS) was also used to divide the samples 
into a 7:3 ratio for the training and test sets, and the statistical table 
of phosphorus concentrations is shown in Table 2. 

 
Figure 3  Probabilistic density function of phosphorus content in 

312 groups of japonica rice leaves 
 

Table 2  Rice leaf phosphorus concentration statistics 
(%) 

Sample set Sample size Minimum set Maximum set Average Standard 
deviation 

Training set 218 0.214 0.414 0.3231 0.0441 
Test set 94 0.228 0.419 0.3268 0.0458 
Overall 312 0.214 0.419 0.3242 0.0446 
 

2.4  Hyperspectral feature band extraction 
As full-band spectral data contains a large number of similar 

bands, the use of a large amount of redundant information for 
modelling often results in slower runs, higher model errors and 
lower inversion accuracy[15].  In order to reduce the number of 
input variables and to reduce the number of inversions, the model 
has to be used in the same way as the model.  In order to reduce 
the number of input variables, reduce data redundancy and improve 
the modelling speed and accuracy, this study decided to adopt two 
methods of feature extraction for hyperspectral data, namely 
Principal Component Analysis (PCA) and discrete wavelet 
multi-scale decomposition. as the main input of the model. 
2.4.1  Principal component analysis 

Principal component analysis (PCA) has been widely used in 
hyperspectral dimensionality reduction.  The basic idea of its 
dimensionality reduction is to project the spectral variables into the 
low-dimensional space by linear mapping, and the transformed 
spectral variables are ranked according to the variance contribution 
rate.  In order to ensure that the total variance information of the 
transformed spectral variables in the low-dimensional space is 
maintained as much as possible, i.e. to ensure the maximum 
independence between the generated new variables and the 
minimum loss of information, 98.918% of the principal 
components were selected as the input quantity of the model in this 
study. 
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2.4.2  Discrete wavelet multiscale decomposition 
Wavelet analysis can achieve accurate decomposition of 

signals in the time and frequency domains, for different signals, the 
way in which they are decomposed varies, for the spectral 
information of leaves, its decomposition is equivalent to a series of 
transformations of spectral data in the spectral band, the expression 
of the wavelet basis function is 

   (3) 

where, a is the stretch factor; b is the translation factor; λ is the 
independent variable; and the mean value of the function is 0. 

The discrete wavelet transform is a discretization of the 
translational and decomposition scales.  f(λ) as the input 
one-dimensional signal can be discretized by the discrete wavelet 
variation coefficient of equation (4) Wj,k for the signal f(λ) 
approximation. 

               (4) 

where the wavelet basis function  can be calculated by 

equation (5). 

             (5) 

where, j,k are the jth layer decomposition and kth wavelet 
coefficients, respectively, and the discrete wavelet variant is 
usually chosen at the scale of a binary sequence, j=2,4,8,..., 2p, pÎN, 
so that the calculation will be more efficient.  When the signal is 
decomposed by the discrete wavelet transform multiscale, the 
resulting wavelet coefficients record the approximate coefficients 
of the low frequency signal and the detail coefficients of the high 
frequency signal.  In general, the approximate coefficients of the 
wavelet signal better reflect the characteristics of the input 
variables, so the wavelet approximate coefficients are chosen as the 
input quantity for the inverse model[16] . 
2.5  Model construction and evaluation criteria 

In this study, two methods, Extreme Learning Machine (ELM) 
and Whale Algorithm-based Extreme Learning Machine 
(WOA-ELM), were used for modelling, and the coefficients of 
determination of the prediction results of the training and test sets 
by the two models R2.  The inverse accuracy and robustness of the 
models were measured by the coefficient of determination and root 
mean square error (RMSE) of the prediction results of the two 
models on the training and test sets. 

The Extreme Learning Machine (ELM) was originally 
proposed by Huang et al. of Nanyang Technological University[17].  
The algorithm randomly generates the connection weights of the 
input and hidden layers during the initialisation process, and 
requires no adjustment during the training of the model, only the 
number of neurons in the hidden layer to be adjusted for 
optimisation.  Compared with other traditional feedforward neural 
network training frameworks, it has significant advantages such as 
fast learning speed and simple implementation method[18].  
However, its mechanism of randomly generating initial values 
tends to reduce the stability and generalisability of the model 
built[19].  Therefore, this study uses the whale algorithm to 
optimise the optimisation of the extreme learning machine. 

The whale algorithm is divided into 3 main steps: encircling 
the prey, the spiral bubble net attack method, and randomly finding 
the prey. 

(1) Surrounding the prey. 

Since the target prey position is unknown a priori, the WOA 
algorithm considers the current position of the best candidate 
individual in the whale group as the target prey position, and the 
other individuals in the group update their position according to the 
position of the best candidate individual.  That is.  

               (6) 

              (7) 
where, X is a position vector representing the current orientation of 
the humpback whale; T is the number of iterations; A and C are 
both coefficient vectors; and X* is the best solution for the currently 
obtained position of the whale population. 

A and C are calculated as 
         (8) 

       (9) 
where, a decreases linearly from 2 to 0 according to the inverse of 
the number of iterations; r is a random vector from 0 to 1. 

(2) Spiral bubble net attack method. 
The WOA algorithm first calculates the distance between an 

individual whale and its target prey, and then simulates the hunting 
behaviour of a humpback whale in a spiral motion. 

D′=                (10) 

         (11) 
where, b is the constant factor defining the shape of the spiral and l 
is an arbitrary constant in the interval –1 to 1. 

(3) Random hunting for prey 
During predation, when A is greater than 1 or less than –1, 

individuals in the pod will randomly select prey with reference to 
each other’s positions to improve the global search capability of the 
algorithm.  Namely 

D =               (12) 
             (13) 

where, Xrand is the random position vector of the current whale 
population. 

WOA optimises ELM in the following steps: 
(1) Parameter initialization.  Set the parameters of WOA: 

number of individual whales, maximum number of iterations, 
variable dimension, upper and lower variable limits. 

(2) Population initialization.  The location values of each 
dimension of all individual whales are randomly initialized, and the 
location values of each dimension of each individual whale 
represent the input weights or thresholds. 

(3) Calculate the fitness value. 
(4) Update the optimal solution.  Find the location of the 

optimal solution among all solutions based on the fitness value of 
each individual whale, and update the location of each individual 
whale based on the location of the optimal solution. 

(5) Position updates for each individual whale. 
(6) Repeat steps (3)-(5) until the maximum number of 

iterations, obtain the best input weights and thresholds, and bring 
the best input weights and thresholds into the ELM network for 
further training. 

In order to assess the accuracy and stability of the inverse 
model for nitrogen and phosphorus content of japonica rice leaves, 
this study used the coefficient of determination R2 and root mean 
square error RMSE were used to test the fitting effect and 
estimation ability of the model.  The equations are given in Eqs. 
(14) and (15). 

,
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               (14) 

            (15) 

3  Results and analysis  

3.1  Screening of spectral feature band  
3.1.1  PCA selection of effective feature bands 

Given that the full-band spectral data contains a large number 
of similar bands, it has a greater impact on the efficiency and 
accuracy of modelling.  Therefore, firstly, principal component 
analysis was used to initially select the characteristic bands to form 
a set of unrelated composite variables to replace the original 
spectral data, which greatly reduced the redundant information in 
the spectral data.  The group of unrelated variables was ranked 
from the largest to the smallest, and finally the top five principal 
components with a cumulative contribution of over 98.918% were 
selected as input variables for modelling. 
3.1.2  Selection of spectral features by discrete wavelet multiscale 
decomposition 

The determination of the wavelet mother function and the best 
decomposition scale is one of the key aspects of wavelet 
decomposition for feature extraction.  If the discrete wavelet 

transform of the spectral signal is multi-scale, the wavelet mother 
function and the decomposition scale can be considered as the best 
choice if the decomposed wavelet information can reflect both the 
profile characteristics of the spectrum and the purpose of 
compressing the data[20]. 

First, using the db10, coif5, sym8 wavelet mother functions for  
a sample data 2j (j=1,2,...,12) scales, denoted as Level 1 to 12 
(Level 1 to 12).  The number of levels of spectral decomposition 
is set to 12, and an input spectral signal is decomposed to produce a 
vector of approximate coefficients (on level 12) and 8 vectors of 
details (on level 1~12).  Figure 4a shows how the ratio of the 
number of decompositions varies with the number of 
decomposition layers.  It can be seen that as the number of 
decomposition layers increases, the number of wavelet coefficients 
generated per layer decreases, with the sym8 wavelet mother 
function being the most effective for the decomposition of spectral 
signals.  This multi-frequency decomposition better reflects the 
low-frequency information of the signal.  Therefore, the 
approximate coefficients of each layer under the db10, coif5 and 
sym8 wavelet mother functions were reconstructed, and the 
correlation coefficients of each reconstructed spectral signal and 
the original spectral signal were calculated, as shown in Figure 4b 
and Table 3. 

 

  
a. Changes of compression ratio with number of decomposition layers b. Changes of correlation coefficient with the number of decomposition layers 

 

Figure 4  Compression rate and correlation coefficient under different wavelet generating functions 
 

Table 3  Number of decomposition level under different wavelet generating functions 

Decomposition 
level 

db10 coiff5 Sym8 

Correlation 
coefficient 

Approximate 
number 

Compression 
ration 

Correlation 
coefficient 

Approximate 
number 

Compression 
ration 

Correlation 
coefficient 

Approximate 
number 

Compression 
ration 

1 1 310 51.495 1 315 52.326 1 308 53.163 
2 1 164 27.243 1 172 28.571 1 161 26.744 
3 1 91 15.116 1 100 16.611 1 88 14.618 
4 1 55 9.136 1 64 10.631 1 51 8.472 
5 1 37 6.146 1 46 7.641 1 33 5.482 
6 0.995 28 4.651 0.997 37 6.146 0.994 24 3.967 
7 0.975 23 3.821 0.986 33 5.481 0.969 19 3.156 
8 0.940 21 3.489 0.914 31 5.150 0.915 17 2.824 
9 0.881 20 3.222 0.895 30 4.983 0.895 16 2.658 

10 0.880 19 3.156 0.879 29 4.817 0.878 15 2.492 
11 0.876 19 3.156 0.876 29 4.817 0.877 15 2.492 
12 0.875 19 3.156 0.875 29 4.817 0.875 15 2.492 

 

From Table 3, we can see that among the three wavelet mother 
functions, the coif5 wavelet mother function has the largest number 
of approximate coefficients, the highest compression ratio, and the 
data compression effect is not very good, the sym8 wavelet mother 
function has the smallest number of approximate coefficients, the 

highest compression ratio, and the best data compression ability, 
and the de10 wavelet mother function has the general data 
compression effect. When the number of decomposition layers 
reaches 7, the number of approximation coefficients of the three 
wavelet mother functions tends to stabilize, among which, the 
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number of approximation coefficients of sym8 wavelet mother 
function is the lowest.  Considering the compression effect and 
the number of approximation coefficients of various wavelet 
mother functions, the sym8 wavelet mother function is chosen and 
the best effect is used for decomposition when the number of 
decomposition layers is 7. 

The essence of the different scales in the discrete wavelet 
transform is to filter the signal with band-pass filters of various 
centre frequencies.  The low-frequency approximate wavelet 
coefficients reflect the significant absorption characteristics of the 
original spectrum and represent the overall shape of the spectrum, 
and by combining the decomposed low-frequency approximate 
wavelet coefficients for the inverse transform, the accuracy of the 
inversion will be improved. 

3.2  Inverse modelling and analysis of nitrogen and 
phosphorus content of japonica rice leaves 
3.2.1  Extreme learning machine inversion modelling 

The inverse model of nitrogen and phosphorus content of rice  
leaves based on extreme learning machine (ELM) was constructed 
by taking the results of dimensionality reduction by PCA and DWT 
as the input of the model and the measured nitrogen and 
phosphorus content of rice leaves as the output, and setting the 
parameters of ELM as follows: the activation function is Sin, and 
the number of neurons in the hidden layer of the feature vector 
using PCA The number of neurons in the hidden layer was adjusted 
to 45 for the feature vector using PCA and 60 for the feature vector 
using discrete wavelet decomposition, which resulted in the best 
inversion.  R2 the modelling results are shown in Figure 5. 

 
a.  b. 

 
c.  d. 

 

Note: a-b are the results of nitrogen and phosphorus inversions of the original hyperspectrum after extracting the eigenvectors by PCA, c-d are the results 
of nitrogen and phosphorus inversions of the original hyperspectrum after extracting the eigenvectors by discrete wavelet decomposition, respectively. 

Figure 5  Extreme Learning Machine inversion results 
 

The results analysis table is shown in Table 4.  From the table, 
it can be seen that the inversion effect of both methods for nitrogen 
and phosphorus is average, among which, the inversion effect for 
nitrogen is better than that for phosphorus, and the correlation 
coefficients of both the training set and the test set reach above 
0.55.  The comparison of the two feature extraction methods 
concludes that the feature vectors screened from hyperspectral data 
using the discrete wavelet multi-scale decomposition method for 
the inversion of rice nitrogen and phosphorus content better. 

 

Table 4   

Element Methods 

Training set Test set 

Decision 
factor RMSE Decision 

factor RMSE 

Nitrogen Principal component 
analysis 0.625 0.6911 0.5538 0.8527 

Multiscale decomposition 
of discrete wavelets 0.6907 0.6232 0.573 0.8431 

Phosgene 

Principal component 
analysis 0.5255 0.0303 0.3451 0.0376 

Multiscale decomposition 
of discrete wavelets 0.5897 0.0268 0.3954 0.0407 

 

3.2.2  Extreme learning machine inversion modelling based on the 
whale algorithm 

The feature vectors obtained by PCA and DWT were used as 
the independent variables of the model and the nitrogen or 
phosphorus content as the dependent variables, respectively, and 
input into the whale optimization algorithm-extreme learning 
machine (WOA-ELM) for training and testing, in this model, the 
population In this model, the number of populations was set to 50 
and the number of iterations was set to 50.  The convergence 
effect of WOA is shown in Figure 6, from which it can be seen that 
the value of the fitness function is basically constant when the 



December, 2022      Yu F H, et al.  Collaborative inverse modeling of nitrogen and phosphorus content in rice based on WOA-ELM      Vol. 5 No. 1   7 

 

number of iterations is close to 50.  The model accuracy was 
evaluated using the coefficient of determination R2 and root mean 
square error RMSE, and the model inversion results are shown in 
Figure 7. 

 

Figure 6  WOA convergence effect 
 

The results analysis table is shown in Table 5, from which it 
can be seen that both feature extraction methods are more effective 
for rice nitrogen and phosphorus inversion, where.  The feature 
vectors extracted by the method of discrete wavelet multi-scale 
decomposition were better for the inversion, with the nitrogen 
training set R2 was 0.7045, the RMSE was 0.7862, the phosphorus 
R2 was 0.5964 with an RMSE of 0.0344.  Overall, the accuracy of 
the nitrogen inversion was greater than that of the phosphorus 
inversion, which was consistent with the results of the inversion 
using the extreme learning machine. 

 
a.  b. 

 
c.  d. 

 

Note: a-b are the results of nitrogen and phosphorus inversions of the original hyperspectrum after extracting the eigenvectors by PCA, c-d are the results 
of nitrogen and phosphorus inversions of the original hyperspectrum after extracting the eigenvectors by discrete wavelet decomposition, respectively. 

Figure 7  Plot of WOA-ELM inversion results 
 

Table 5  Comparison of the coefficient of determination and 
RMSE for the inversion results of the extreme learning 

machine based on the whale algorithm 

Element Methods 

Training set Test set 

Decision 
factor RMSE Decision 

factor RMSE 

Nitrogen 
Principal component analysis 0.6637 0.7636 0.5620 0.6675 
Multiscale decomposition of 
discrete wavelets 0.7045 0.7861 0.5963 0.7909 

Phosgene 
Principal component analysis 0.5481 0.0343 0.4053 0.0409 
Multiscale decomposition of 
discrete wavelets 0.5964 0.0344 0.4297 0.0431 

4  Discussion 

As nitrogen and phosphorus are essential nutrients for crop 
growth, accurate information on nitrogen and phosphorus nutrient 
levels is important for precise crop management, saving planting 
costs and controlling farmland surface pollution.  Previous studies 
have mostly focused on the effects of single levels of nitrogen and 
phosphorus on crop spectra, while capturing both nitrogen and 
phosphorus nutrient indicators in complex spectral information can 
provide a faster grasp of the full range of growth information and 
nutrient levels in rice. 

In this study, the UAV imaging hyperspectral remote sensing 
platform was used to acquire hyperspectral remote sensing images 
of japonica rice, and the agronomic information was collected 
simultaneously on the ground.  In terms of hyperspectral feature 
extraction, a cumulative contribution of 98.918% principal 
components obtained by principal component analysis was used as 
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the main input to the model, and a total of five principal 
components were obtained.  This is due to the small sample size 
and the fact that the contribution of each component to the 
principal component in the principal component analysis is 
measured by the magnitude of the variance, which tends to be 
stable when the sample size is larger and a small amount of data is 
contingent and may have an impact on the results of the principal 
component analysis.  The variance tends to stabilise when the 
sample size is larger, and a small amount of data is contingent and 
may affect the results of the principal component analysis.  The 
results of dimensionality reduction from the method of discrete 
wavelet multi-scale decomposition are shown in Figure 4b, which 
shows the change of correlation coefficient between the 
reconstructed spectral signal and the original spectral signal for 
different decomposition layers.  It can be seen that the correlation 
coefficient decreases rapidly as the number of decomposition layers 
increases and tends to stabilise when the number of decomposition 
layers reaches 12.  According to previous studies, the model is 
very sensitive to the number of decomposition layers where the 
wavelet coefficients are located when constructing the inversion 
model, so the choice of scale is important.  If the scale is too small, 
the noise cannot be effectively removed and the prediction 
accuracy cannot be improved.  In this study, a 12-layer 
decomposition was chosen.  In this study, the number of 
decomposition layers of 12 can not only improve the prediction 
accuracy of the model, but also improve the robustness of the 
model and make the prediction results more stable. 

The feature vectors obtained after principal-form analysis and 
discrete wavelet multiscale decomposition and dimensionality 
reduction were used as input quantities respectively, and the 
nitrogen and phosphorus contents of rice measured by chemical 
experiments were used as output quantities to construct a 
simultaneous inversion model of rice nitrogen and phosphorus 
contents based on limit learning machine and whale algorithm.  
From the effect of inversion, the two inversion models were better 
than phosphorus for rice nitrogen content, which was due to the 
relatively low phosphorus content and the uneven distribution of 
data in the range, which caused more difficulty for inversion, which 
was consistent with the results of previous studies.  Among them, 
ELM’s inversion model had better inversion results for both 
nitrogen and phosphorus in the training set, but the difference 
between the validation set and the training set was larger, and the 
phenomenon of overfitting occurred, with weak generalization 
ability, which failed to achieve accurate inversion of rice nitrogen 
and phosphorus contents well.  This is due to the fact that ELM 
randomly generates the connection weights between the input and 
hidden layers and the threshold values of the neurons in the hidden 
layer, and there is no need to adjust them during the training 
process, only the number of neurons in the hidden layer needs to be 
set in order to find the optimal solution.  This method tends to fall 
into local minima, resulting in poor stability of the results.  In 
comparison, the WOA-ELM inversion model has better inversion 
results, and the difference between the validation and training sets 
has decreased.  Therefore, the WOA-ELM inversion model has 
slightly better inversion results, the difference between the 
validation and training sets has decreased, and the test results are 
more accurate, with the strongest generalisation ability and the 
highest recognition accuracy.  This is due to the fact that the 
WOA-ELM model uses the WOA algorithm to optimize the 

optimization mechanism of ELM, which overcomes the 
disadvantages of random initialization of parameters in the input 
and implicit layers of ELM, and improves the global search ability 
of the network, so that the network has better recognition accuracy. 

This paper proposes a monitoring method for simultaneous 
inversion of rice nitrogen and phosphorus content based on the 
extreme learning machine of the whale algorithm, and although the 
model inversion is good, there are still several shortcomings.  In 
real rice fields, there are many factors that affect the hyperspectral 
data, so the nitrogen and phosphorus inversion model proposed in 
this study has significant limitations.  Therefore, in future studies, 
stable nutrient prediction models need to be developed by 
expanding the data of rice varieties, different years and different 
paddy environments. 

5  Conclusion 

This paper is based on rice plot trials with different N fertilizer 
application treatments, destructive sampling method to obtain rice 
leaves at full fertility, using chemical experimental methods to 
obtain leaf nitrogen and phosphorus content, using principal 
component analysis and discrete wavelet multi-scale decomposition 
method to extract hyperspectral characteristic wavelengths, using 
the two methods to construct rice leaf N and P elemental content 
inversion models and compare their differences, the main 
conclusions are as follows. 

(1) For hyperspectral data, two methods, principal component 
analysis and discrete wavelet multiscale decomposition, were used 
to filter feature vectors for simultaneous inversion of phosphorus 
and nitrogen, and the feature vectors extracted using the discrete 
wavelet multiscale decomposition method achieved the best 
modelling results in model prediction, and the study determined the 
optimal number of wavelet decomposition layers to be 12 and the 
wavelet mother function to be ‘sym8’. 

2) Overall, the inversion of the model is better for nitrogen 
than for phosphorus, due to the relatively low phosphorus content 
and the uneven distribution of the data over the range, which makes 
the inversion more difficult, and further improvements in the 
accuracy of the model are needed in future studies. 

(3) ELM and WOA-ELM were used to construct the inverse 
models of nitrogen and phosphorus contents of rice leaves, 
respectively.  The results showed that the estimation effect of the 
WOA-ELM model was better than that of the ELM model, with the 
nitrogen inversions R2 up to 0.7045 and the phosphorus inversion 
R2 up to 0.4297. 

The inverse model of nitrogen and phosphorus content of rice 
leaves can simultaneously estimate two nutrients in rice leaves, 
which greatly improves the efficiency of obtaining the nutrient 
content of rice leaves and ensures the accuracy of the estimation 
results and the stability of the model, providing a new method for 
accurately obtaining the elemental content of nitrogen and 
phosphorus in rice[34-35]. 
 

[References] 
[1] Thomas J R , Oerther G F .  Estimating Nitrogen Content Of Sweet 

Pepper Leaves by Reflectance Measurements.  Agronomy journal, 1972, 
64(1): 11–13.  Doi: 10.2134/agronj1972.00021962006400010004x. 

[2] Kokaly R F.  Investigating a Physical Basis for Spectroscopic Estimates of 
Leaf Nitrogen Concentration.  Remote Sensing of Environment, 2001, 
75(2): 153–161.  Doi: 10.1016/S0034-4257(00)00163-2. 



December, 2022      Yu F H, et al.  Collaborative inverse modeling of nitrogen and phosphorus content in rice based on WOA-ELM      Vol. 5 No. 1   9 

 

[3] Osborne S L, Schepers J S, Francis D D , et al.  Detection of Phosphorus 
and Nitrogen Deficiencies in Corn Using Spectral Radiance Measurements.  
Agronomy Journal, 2002, 94(6).  Doi: 10.2134/agronj2002.1215. 

[4] Huang G B , Zhu Q Y , Siew C K.  Extreme learning machine: Theory and 
applications.  Neurocomputing, 2006, 70(1/3): 489–501.  Doi: 10.1016/ 
j.neucom.2005.12.126. 

[5] Gupta R K, Vijayan D, Prasad T S.  Comparative analysis of red-edge 
hyperspectral indices.  Advances in Space Research, 2003, 32(11): 
2217–2222.  Doi: 10.1016/S0273-1177(03)90545-X. 

[6] Haboudane D.  Hyperspectral vegetation indices and novel algorithms for 
predicting green LAI of crop canopies: Modeling and validation in the 
context of precision agriculture.  Remote Sensing of Environment, 2004, 
90.  Doi: 10.1016/j.rse.2003.12.013. 

[7] Broge N H, Leblanc E.  Comparing prediction power and stability of 
broadband and hyperspectral vegetation indices for estimation of green leaf 
area index and canopy chlorophyll density.  Remote Sensing of 
Environment, 2001, 76(2): 156–172.  Doi: 10.1016/ S0034-4257(00)00197-8. 

[8] Chen P, Haboudane D, Tremblay N, et al.  New spectral indicator 
assessing the efficiency of crop nitrogen treatment in corn and wheat.  
Remote Sensing of Environment, 2010, 114(9): 1987–1997.  Doi: 
10.1016/j.rse.2010.04.006. 

[9] Li B, Liew O W, Asundi A K.  Pre-visual detection of iron and phosphorus 
deficiency by transformed reflectance spectra.  Journal of Photochemistry 
& Photobiology B Biology, 2006, 85(2): 131–139.  Doi: 10.1016/ 
j.jphotobiol.2006.06.005. 

[10] K Müller, Bttcher U, Meyer-Schatz F, et al.  Analysis of vegetation 
indices derived from hyperspectral reflection measurements for estimating 
crop canopy parameters of oilseed rape (Brassica napus L.).  Academic 
Press, 2008(2).  Doi: 10.1016/J.BIOSYSTEMSENG.2008.07.004. 

[11] Fitzgerald G, Rodriguez D, Garry O.  Measuring and predicting canopy 
nitrogen nutrition  in  wheat  using  a  spectral  index：The  canopy  
chlorophyll  content index (CCCI).  Field Crops Research, 2010, 3(116): 
318–324.  

[12] Burgos, X.P., Angela, R., Alberto, T., Gonzalo, P.  Analysis of  natural  
images processing  for  the  extraction  of  agricultural  elements.  
Image  and  Vision Computing, 2010, 28(1): 138–149.  Doi: 10.1016/ 
j.imavis.2009.05.009. 

[13] Xu G L, Zhang F L, Shah, et al.  Use  of  leaf  color  images  to 
identify nitrogen and  potassium  deficient  tomatoes.  Pattern  
Recognition  Letters, 2011, 32(11): 1584–1590.  Doi: 10.1016/ 

j.patrec.2011.04.020. 
[14] Cai W S, Li Y K, Shao X G． A variable selection method based on  

uninformative  variable  elimination  for  multivariate  calibration  
of near-infrared  spectra．Chemometrics  and  Intelligent  Laboratory  
Systems, 2008, 90(2): 188–194.  Doi: 10.1016/j.chemolab.2007.10.001. 

[15] Osborne S L, Schepers J S, Francis D D, Schlemmer M R.  Detection of  
phosphorus  and  nitrogen  deficiencies  in  corn  using  spectral 
radiance measurements.  Agronomy Journal, 2002, 94: 1215–1221.  Doi: 
10.2134/agronj2002.1215. 

[16] Menesatti  P,  Antonucci  F,  Pallottino  F,  Roccuzzo  G,  Allegra  
M, Stagno  F,  Intriglioio  F.   Estimation  of  plant  nutritional  
status  by Vis-NIR  spectrophotometric  analysis  on  orange  leaves.   
Biosystems engineering, 2010, 105(4): 448–454.  Doi: 10.1016/ 
j.biosystemseng.2010.01.003. 

[17] Bronson K F, Chua T T, Booker J D, et al..  In-season nitrogen status in 
irrigated cotton II leaf nitrogen and biomass.  Soil Science Society of 
American Journal, 2003(07): 1439–1448.  

[18] Hamm J, Lee D.  Separating pose and expression in face images: a 
manifold learning approach.  Neural Information Processing-Letters and 
Reviews, 2007(04): 91–100.  

[19] Ma J F, Yamaji N, Mitani N, et al.  Transporters of arsenitein rice and their 
role in arsenic accumulation in rice grain.  Proceedings of the National 
Academy of Sciences ofthe United States of America, 2008, 105(29): 
9931–9935.  Doi: 10.1073/pnas.0802361105. 

[20] Asmhm Talukder, Ca Meisner, Mar Sarkar, et al.  Effect ofwater 
management, arsenic and phosphorus levels on ricein a high -arsenic soil 
-water system: II.  arsenic uptake .Ecotoxicology Environmental Safety, 
2012, 80(80): 145–151.  Doi: 10.1016/S1672-6308(13)60172-9 . 

 


