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Abstract: The yield of litchi is closely related to the on-demand and precise operation of litchi trees.  For litchi trees with 
different flowering rates, the quantity of fertilizer application may also vary from tree to tree.  In order to reduce labor 
requirements and improve the efficiency of observing the flowering rate of the litchi canopy, this study combines multispectral 
remote sensing images with deep learning technology to achieve flowering rate recognition and modeling of the litchi tree 
canopy in large-scale orchards.  This research proposes a technique for merging visible images with multispectral images.  
The five vegetation index images calculated from remote sensing images of five different wavelength bands were combined 
with visible three-channel images to derive the most favorable combination of vegetation index channels for identifying the 
flowering rate of the litchi canopy; the obtained multi-channel images were used as inputs for training, and the Vision 
Transformer neural network was used to construct a litchi canopy flowering rate recognition model with a normalization 
method to further improve the accuracy of the model.  After normalization, the best results of litchi canopy flowering rate 
recognition were obtained when RGB was fused with OSAVI and NDVI vegetation indices.  Compared with other models, the 
recognition model constructed based on Vision Transformer achieved an accuracy of 97.22%.  This study can accurately 
identify the flowering rate of the litchi canopy under multispectral remote sensing images and direct the appropriate fertilizing 
or other production activities, which is helpful to realize the intelligent management of orchards. 
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1  Introduction  

Lingnan has long been known for its production of litchi; in 
fact, the emperor once dispatched people thousands of kilometers 
away to send fresh litchi in an effort to ingratiate the concubine.  
Litchi has been grown in the Lingnan area for over a thousand 
years; It is the most blatant regional advantage, has the most 
distinctive variety, and is the largest fruit to be planted in 
Guangdong Province[1].  Guangdong Province litchi production 
has long been stable at about 1.31 million tons, with the cultivated 
area of about 4.1 million mu, production and area are ranked first in 
the country.  Guangdong to achieve 1.165 million poor people all 
out of poverty in 2021, the bright achievements behind the 
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“increase in production and income” of the litchi industry to 
support[2].  Guangdong’s litchi industry has infused a consistent 
wellspring of essentialness for rustic renewal and destitution 
easing. 

However, Guangdong litchi industry is hindered by some 
bottlenecks.  The yield will be affected by climate, planting 
environment, fertilization, plant protection and so on.  The precise 
control of farming operations can ensure the maximization of 
production and optimization of quality.  During the flowering 
period, too little fertilizer application can easily lead to nutrient 
deficiency and yield reduction in litchi trees, and too much 
fertilizer application can easily lead to the coagulation of pistils and 
even soil caking.  If more flowers bloom, the nutrition will not 
keep up and the yield will decrease.  The type and amount of 
fertilizer to be applied is a challenge.  This requires a more 
comprehensive production management system, through the 
observation of the litchi flowering rate, and thus provides more 
cutting-edge technical guidance on the amount of fertilizer applied 
to the litchi flowering period, to achieve real-time crop 
management and refinement.  At present, the mainstream research 
method is to take images of litchi flowers at close range and use 
computer vision and machine learning methods for flowering 
recognition and diagnosis.  However, for large-scale flowering 
rate identification in orchards the above methods are inefficient and 
require a lot of wasted material and financial resources.  The use 
of artificial intelligence technology may a major key to solving the 
problems of the litchi industry. 
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Currently, artificial intelligence techniques are widely used to 
implement smart orchards.  For smart orchard for litchi, Xiong et 
al.[3] selected the YCbCr color model to judge three cases of 
immature, mature, and matured litchi fruits with decayed and 
deteriorated appearances, and established an intelligent system for 
litchi fruit quality identification with a correct rate of 93%.  Jiang 
et al.[4] used high-resolution remote sensing images of litchi forest 
canopy information for extraction, and the final detection overall 
accuracy was 87.75%.  Wang et al.[5] used a fully convolutional 
neural network for litchi epidermal defect extraction to improve the 
quality detection grading accuracy.  Xiong et al.[6] proposed a 
deep semantic segmentation network to identify litchi flower and 
leaf pixels and segment them with a final recognition accuracy of 
87%.  Ye et al.[7] used a deep learning algorithm to achieve the 
identification of litchi pests with 95% accuracy.  Lin et al.[8] used 
a multi-column convolutional neural network to estimate the 
amount of litchi flowers based on a density map by near ground 
observation and visible images.  However, little research has been 
found to accurately determine the flowering rate of the litchi 
canopy from low altitude perspective, which can highly improve 
the efficiency of orchard patrol.  As for the flowering rate of the 
other crops or spcecies, some exploration can be found in 
herbaceous plants such as rapeseed and mustard[9-10]. 

Crops in different states have different spectral information, so 
spectrum information has been widely adopted to discover the 
status of disease and growth of crops.  Multispectral cameras use 
blue, green, red, red-edge and near-infrared bands to capture visible 
and invisible images of crops and vegetation[11].  These images are 
processed to provide farmers with timely and valuable information.  
Therefore, with the booming development of UAV remote sensing 
technology, more and more people are using UAVs with 
multispectral cameras, flying at low altitude to obtain efficient and 
high-resolution multispectral information, synthesizing and 
analyzing the obtained data[12], and then processing them through 
modeling, data analysis, and identification, which can realize 
applications such as farmland digitization and precision planting 
management, permitting farmers to save time and cost.  Xiao et 
al.[13] took multispectral images of apple tree canopies by a UAV 
with a multispectral camera and estimated the flowering of apple 
trees using the grayscale values of R, G, and NIR as features, and 
the accuracy of the model reached 97%.  Nogueira et al.[14] used a 
5-band multispectral camera and a RGB camera to obtain crop 
canopy spectral information, and then used the coffee Maturity 
Index (CRI) and other five vegetation indices to complete the 
detection of coffee maturity.  Deng et al.[15-17] and Lan et al.[18-19] 
used UAV hyperspectral and multispectral technology to detect 
citrus Huanglongbing disease with different machine learning 
algorithms and different vegetation indices.  Ma et al.[20] 
calculated the non-healthy crop area and generated an agricultural 
monitoring report by color rendering the difference of NDVI index 
for each pixel point of the multispectral image map.  Yang et al.[21] 
used the multispectral local R component as a spectral component 
for the ripeness determination of the Serpentine grape, and 
constructed a multispectral local R component and Serpentine 
grape ripeness relationship model with an average prediction error 
of ≤1.388% and a maximum prediction error of ≤4.6%.  Zhang[22] 
proposed an end-to-end convolutional neural network spectral 
qualitative analysis model and applied it to the identification of 20 
grape varieties, and the average classification accuracy of the 
model reached 87.81%.  Using convolutional neural networks, 
Wu et al.[23] trained a recognition model to determine the 

nutritional status class of maize plants, in which the recognition 
verification set of color images reached 84.7% correct and the 
verification set of five-channel multispectral images reached 90.5% 
correct.  Fabiano et al.[24] used images collected in the ultraviolet 
A region (365 nm) to classify the health status of rye seeds.  The 
outcomes were quicker and more successful than conventional 
techniques.  Fawakherji et al.[25] used generative adversarial 
networks (GANs) and RGB and NIR information to build a model 
that can generate 4-channel multispectral synthetic images of 
vegetation, further developing the segmentation performance of 
current semantic segmentation convolutional network.  
Multispectral remote sensing is an extremely powerful tool for 
analyzing plant growth conditions these days.  The development 
of multispectral imaging technology has enabled researchers to no 
longer limit the spectral analysis of vegetation to the visible level, 
and multispectral data of vegetation has opened a new window.  
At the same time, more and more researchers have started to apply 
deep learning techniques to vegetation feature extraction, 
promoting the efficient and intelligent analysis of vegetation 
spectral information. 

Summing up the past exploration results, it can be found that 
the effective use of vegetation spectral information by deep 
learning technology has extraordinary potential and attainability in 
vegetation growth monitoring.  Therefore, in this study, we use 
the multi-spectral UAV to obtain the spectral information of litchi 
canopy, calculate various vegetation indexes, screen out the 
vegetation indexes that are conducive to distinguishing different 
flowering rates of litchi, and then use the neural network to 
establish a recognition model to estimate the flowering rate, which 
provides a basis for precise agricultural operations. 

2  Materials and Methods 

2.1  Overview of the test site 
The experimental site for this study was located in a litchi 

orchard in Conghua District, Guangzhou City, Guangdong 
Province, China (23°35′11.98″N-113°36′48.49″E), with 141 litchi 
trees.  The geographical overview of the orchard is shown in 
Figure 1. 

 
a.                                b. 

Figure 1  Geographical location of Litchi Orchard 
 

2.2  Data acquisition equipment 
Multispectral images of the litchi canopy were obtained from 

aerial photography by a DJI Phantom 4 Pro multispectral version of 
the UAV.  As shown in Figure 2, The UAV has a multispectral 
imaging system equipped with six 1/2.9″ image sensors, including 
a visible light sensor and five monochrome sensors: blue (450 ±  
16 nm), green (560 ± 16 nm), red (650 ± 16 nm), red edge (730 ±    

16 nm), and near-infrared (840 ± 26 nm) for acquiring visible and 
multispectral images, respectively.  It has a maximum flight time 
of about 30 minutes.  The data collection dates are on February 20, 
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March 1, March 17 and March 26, 2021.  The UAV flied at an 
altitude of 45 meters. 

 
Figure 2  DJI Phantom 4 Pro 

2.3  Data pre-processing 
2.3.1  Image stitching 

The aerial images were stitched and processed by DJI Map 
software to obtain the panoramic visible images of the orchard and 
five vegetation index images generated based on monochromatic 
spectral data.  The vegetation index images are shown in Figure 3, 
which are GNDVI[26], LCI[27], NDRE[28], NDVI[29], and OSAVI[30], 
the explanation of the five vegetation indices are shown in Table 1. 

 
a. GNDVI b. LCI c. NDRE 

 
d. NDVI  e. OSAVI 

 

Figure 3  Vegetation index image 
 

Table 1  The definition of five vegetation indices 

Five vegetation index Vegetation index meaning Formula 

GNDVI 
GNDVI replaces the red light band in NDVI with the green light band and is a ground greenness 
index that characterizes the green plant canopy cover.  It also reflects the decline in biomass after 
vegetation is subjected to water and plant stress or maturity. 

GNDVI = (NIR – Green)/(NIR+Green) 

LCI 
LCI is an important indicator for assessing vegetation growth and yield.  Chlorophyll content is 
one of the important indicators to evaluate plant nutrient stress, disease, growth and senescence.  
It is good for measuring chlorophyll nitrogen content in vegetation. 

LCI = (NIR – RedEdge)/(NIR + Red) 

NDRE 
NDRE changes the red light band in NDVI to the red-edge band.  The red-edge band is a spectral 
region in the transition from the red spectrum to the near-infrared spectrum.  It is better for 
determining the chlorophyll content of non-primary crops. 

NDRE = (NIR – RedEdge)/(NIR +RedEdge) 

NDVI 
NDVI is the most widely used indicator to measure the chlorophyll content of vegetation, which 
reflects the nutrient and growth information of vegetation and is suitable for monitoring the 
growth status of vegetation as well as the vegetation cover. 

NDVI = (NIR – Red)/(NIR+Red) 

OSAVI 
OSAVI is based on NDVI and takes soil factors into account, which can effectively determine the 
chlorophyll content in the early stage of plant growth, while avoiding the complicated calculation 
of soil baseline parameters and better eliminating soil background and other interference. 

OSAVI = (NIR – Red)/(NIR+Red+0.16) 

 

2.3.2  Litchi canopy extraction method 
The canopy of each litchi tree in the visible image was labeled 

using the LabelMe labeling tool.  Since the canopy position 
information in the vegetation index image and the visible image is 
the same, according to the example segmentation method proposed 
by Mo et al.[31], the canopy coordinate file of the visible image can 
be used to crop out the litchi canopy in the five vegetation index 
images easily and quickly so that the corresponding coordinate files 
were generated.  After cropping, a small number of Nan values 
which is the non-Litchi canopy area exists in the matrix of a small 

number of vegetation index canopy images.  As most of the 
non-Litchi canopy area is soil and almost no plants exist, the Nan 
value in the non-Litchi canopy area was set to 0 in this study.  The 
steps of canopy extraction are shown in Figure 4. 
2.3.3  Data Enhancement 

Deep learning requires a large amount of sample data to train a 
better model.  To prevent overfitting of the model during training, 
this study enhances the image samples by image rotation based on 
the existing image data.  All images in the training set were 
rotated by 90 degrees counterclockwise, flipped horizontally, 
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rotated 90 degrees counterclockwise followed by flipped 
horizontally, and flipped horizontally followed by 90 degrees 

counterclockwise in four ways, which increased the amount of data 
by four times.  The enhancement effect is shown in Figure 5. 

 
Figure 4  Steps of canopy extraction 

 

     
a. Original b. Rotate 90 angle c. Rotate 90 angle and flip vertically d. Flip vertically e. Rotate 90 angle and flip horizontally 

 

Figure 5  Data enhancement examples 
 

After manually resolving the visible canopy images of each 
phase, the flowering rate of all canopies in each data set category 
was classified into 0%, 10%~30%, 40%~70%, and >80% in this 
study.  The canopy samples were then divided into four categories 
according to the four intervals of 0%, 10~30%, 40~70%, and >80%.  
80% of the samples in each category were randomly selected as the 
training set, 20% as the test set, and 10% of the training set as the 
validation set.  The construction of the dataset was finally 
completed, as shown in Table 2. 

 

Table 2  Division of datasets 
Flowering rate Training set Validation set Test set Total 

0% 468 52 130 650 
10%~30% 551 61 153 765 
40%~70% 436 48 121 605 

>80% 490 54 136 680 
 

2.4  Selection method of the optimal channel combination 
The definition of five vegetation indices of Table 1 shows that 

GNDVI mainly characterizes the canopy coverage of green plants, 
the larger the value is, the greater the vegetation density is; LCI has 
better effect on determining the chlorophyll nitrogen content in 
vegetation; NDVI reflects the chlorophyll content of vegetation.  
When NDVI is negative, the area is highly reflective such as water, 
building glass, etc., 0 means the area is rock or soil, etc., and 
positive values indicate vegetation cover; NDRE and OSAVI both 
measure chlorophyll content, but OSAVI takes soil factors into 
account based on NDVI, which can eliminate the influence of soil 
baseline parameters to determine the chlorophyll content in the 
early stage of plant growth. 

Based on the characteristics of the five vegetation indices, this 
study inferred that there are vegetation indices among these five 
vegetation indices are favorable for the identification of flowering 
rate in the litchi canopy.  To confirm our inference, the 
corresponding images were fused in this experiment.  Based on 
the three channels R, G, and B of the visible image, five vegetation 
indices were synthesized as the fourth channel in this study, 
respectively, and the fused images of vegetation indices of the 
litchi canopy were synthesized as shown in Figure 6a.  After 
selecting the vegetation index channels that are favorable to 
identify the flowering rate after fusion with RGB, further 
experiments were conducted to finally discover the most favorable 
band combination for canopy flowering rate identification. 

Based on the canopy images from four aerial photographs, this 
study finally produced six datasets: RGB dataset, RGB-GNDVI 
dataset, RGB-LCI dataset, RGB-NDRE dataset, RGB-NDVI 
dataset, and RGB-OSAVI dataset, and 2700 litchi canopy images 

were obtained for each dataset.  In order to verify that the 
vegetation index fusion images have better performance in model 
training, this study also produced a visible light canopy image 
dataset, five-channel vegetation index canopy image datasets, and 
an eight-channel canopy image dataset for experimental 
comparison. 
 

  
a. RGB+GNDVI (4×448×448) b. Image of four bands 

 

Figure 6  Fusion of multispectral images 
 

2.5  Normalization 
The values of vegetation indices are all between –1 and 1.  In 

order to limit the value of each band of the fused vegetation index 
to a certain range, this study normalized the images after fusing the 
multispectral images.  The mean and standard deviation of the 
canopy data of each band was calculated except for the non-litchi 
canopy image areas.  Z-Score normalization was adopted as 
shown in the formula (1). 

Valuenew = (Numi – Meani)/Stdi              (1) 
where, Valuenew means the value after regulation; Numi is the image 
canopy data of channel i; Meani is the mean value of the image 
canopy data of channel i, and Stdi is the standard deviation of the 
image canopy data of channel i.  The specific process is shown in 
Figure 7. 
2.6  Model Building 
2.6.1  ViT network 

ViT (Vision Transformer), which apply the idea of NLP 
(Natural Language Processing) field to CV (Computer Vision) 
field[32], has a strong jumping connection mechanism and the 
ability to learn global features at a lower level, and has the ability 
to learn accurate position representation at a higher level.  This 
behavior is very different from ResNet because global average 
pooling may blur location information.  In this study, ViT was 
adopted as a deep learning neural network.  The ViT network 
structure is shown in Figure 8 and the technical roadmap for this 
study is shown in Figure 9. 
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Figure 7  Normalization process 

 
Figure 8  Vision Transformer Structure 

 

 
Figure 9  Technology Roadmap 

 

In order to verify the advantages of the ViT neural network for 
litchi canopy flowering rate recognition, three mainstream neural 
networks, VGG16, ResNet50 (Residual Network 50), and 
MobileNetV2, were used in this study for comparison. 
2.7  Model evaluation index 

This study adopted Top_1 Accuracy to test the generalization 
ability of the model.  In the prediction, the value with the highest 
probability in the last probability vector was adopted as the 
prediction result.  Top_1 Accuracy is defined as the percentage 
obtained by dividing the total number of correctly predicted images 
by the total number of images participating in the prediction.  The 
calculation formula is shown in Equation (2).  

Top_1 = (Numr/Sum)×100%            (2) 
where, Numr refers to the total number of correctly predicted 
images, and Sun refers to the total number of predicted images. 

3  Experimental results and analysis 

3.1  Experimental environment and parameter settings 
This study used Pytorch 1.2 deep learning framework with 

NVIDIA GeForce GTX 1650 graphics card with 4G memory, and 
the bottom layer used CUDA 10.1 as the underlying parallel 
computing framework.  In terms of training strategy, the Batch 
Size was 6, a total of 200 iterations were trained on the training set, 
the initial learning rate was 1e-4, the learning decay rate was 0.92, 
and the duration of a training session was about 14 hours.  VIT 
was selected as the deep learning network to fuse the five 
vegetation index images with RGB visible images separately to 
complete the multispectral fusion dataset.  The multispectral 
fusion dataset with five different vegetation indices added was 
trained separately with the visible RGB dataset, and the 
characteristic vegetation indices were selected by Top_1 testing and 
comparison of the optimal model.  Each experimental method was 
trained more than five times, and the optimal classification model 
of Top_1 test was retained.  
3.2  Finding the optimal band/channel combinations 

By fusing each of the five vegetation indices with the RGB 
visible images, the most suitable combination of feature bands for 
identifying multispectral litchi flowering rate images was found.  
As can be seen from Table 3, when RGB was combined with 
vegetation indices, the obtained Top_1 accuracy was slightly 
improved in all cases. 

 

Table 3  Model accuracy when RGB is combined with 
individual vegetation indexes 

Number RGB + GNDVI LCI NDRE NDVI OSAVI Top_1 

1 √      90.74 
2 √ √     91.85 
3 √  √    90.93 
4 √   √   92.22 
5 √    √  93.15 
6 √     √ 92.61 

 

In Table 3, the model accuracy improvement is fewer when 
RGB was combined with GNDVI and LCI, which is not effective 
in promoting canopy flowering rate recognition.  Therefore, in 
this study, the other three bands NDRE, NDVI, and OSAVI were 
tested in combination with RGB, the obtained Top_1 accuracy is 
shown in Table 4.  Above the Table 3 and Table 4, the accuracy is 
highest when RGB was fused with OSAVI and NDVI bands.  
Therefore, the multispectral band combination of RGB+OSAVI+ 
NDVI was selected as the optimal combination in this study. 

 

Table 4  Model accuracy and control group accuracy when 
RGB was combined with NDRE, NDVI, and OSAVI 

Number RGB + NDRE NDVI OSAVI LCI GNDVI Top_1 

1 √ √ √    91.48 
2 √ √  √   94.26 
3 √  √ √   95.00 
4 √ √ √ √   93.89 
5  √ √ √ √ √ 90.56 
6 √ √ √ √ √ √ 93.52 

 
 

3.3  Channel data Normalization 
Since the spectral images have values between -1 and 1, their 

mean and standard deviation do not exceed 1, and the standard 
deviation is smaller than the mean, so the difference of the image 
data will be larger than the original one after calculation using 
Equation (1).  The normalization will make the differences between 
canopies with different flowering rates more obvious, and the 
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neural network model can learn the difference information better to 
improve the accuracy of the model.  Before normalization, observing 
the output data, it can be seen that the loss value fluctuated greatly 
in the early training period and the training loss finally converged 
to 0.21.  After normalization, the loss value fluctuated slightly and 
the training loss converged to 0.02.  The accuracy of the model 
Top_1 obtained from the RGB + OSAVI + NDVI dataset after 
several training sessions improved from 95.0% to 97.22%, showing 
that the normalization can significantly improve the generalization 
ability of the model, further extracting the vegetation index 
information of the feature bands and training a better model. 
3.4  Network comparison experiments 

Three neural networks, VGG16, MobileNetV2, and ResNet50, 
were used in this study for comparison.  With the same dataset, 

the Batch size was set to the maximum value of memory according 
to the computer configuration.  The learning rate was selected 
after several attempts to select the optimal learning rate of the 
corresponding network.  The experimental results are shown in 
Table 5.  A comparison of the training loss curves of the four 
neural networks is shown in Figure 10. 

 

Table 5  Comparison of experimental results of four neural 
networks 

Network Learning Rate Batch size Top_1 

ResNet50 1e-4 28 96.66% 
VGG16 1e-5 12 87.96% 

MobileNetV2 1e-3 36 94.81% 
ViT 1e-4 6 97.22% 

 
ResNet50  Vgg16 

  
MobileNetV2  ViT 

 

Figure 10  Comparison of loss curves of four neural networks 
[

3.5  Visualization of flowering rate recognition 
The visualization of litchi canopy flowering rate recognition is 

shown in Figure 11.  Since the five-channel images cannot be 
observed normally, the first three channels (i.e., R, G, and B) of the 

five-channel images are selected for display.  The actual label 
category as well as the model predicted category are displayed 
above each canopy image.  The text indicated by red show the 
incorrect result.  
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Figure 11  Results of flowering rate identification 

 

4  Conclusion  

In order to estimate the flowering rate of litchi using the multi 
spectral image of UAV, the following work was completed in this 
study.  The best combination of RGB, OSAVI and NDVI, which 
are most helpful to distinguish the flowering rate of litchi canopy, 
was determined among the five vegetation index and RGB bands.  
It is also confirmed that only vegetation index is not conducive to 
litchi canopy classification.  It is necessary to combine RGB and 
vegetation index to reduce the interference of non vegetation 
information on litchi crown under the influence of vegetation index, 
which is conducive to better extraction of litchi crown features by 
deep learning network.  ViT deep learning method achieves best 
results in the recognition of the litchi flowering rate compared with 
other mainstream neural networks.  Also, after normalization for 
the data of the selected optimal band combination, the classification 
accuracy was the highest, reaching 97.22%.  

The work done in this study makes the realization of efficient 
and intelligent orchard management, greatly reduce the labor of 
gardeners and better monitor the agricultural information of the 
orchard, makes fast and accurate agricultural decisions for 
cultivating high-yielding litchi. 
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