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Abstract: Weed mapping is essential for Site Specific Weed Management (SSWM) applications.  Semantic segmentation is 
the mainstream algorithm to perform the weed mapping at pixel level, which is proven to be superiors than the traditional 
Object Based Image Analysis (OBIA) approaches.  However, the semantic segmentation requires large amount of annotated 
data for parameter updating, and the development of such methods are currently limited by the shortage of annotated data in the 
SSWM community.  To address this problem, this paper proposed a semi-supervised learning method for accurate weed 
mapping of UAV imagery.  Firstly, we applied limited training data with annotation to train the classifiers of the OBIA 
method.  Secondly, we used the trained OBIA model to produce the pseudo labels for other training data without annotations.  
Finally, we applied both the manual annotations and the generated pseudo labels to train the semantic segmentation models.  
The proposed method is compared with the mainstream semantic segmentation at different training sizes.  Experimental results 
showed that the proposed semi-supervised learning method significantly improved the prediction precision at different training 
sizes.  Furthermore, the proposed algorithm well addressed the overfitting problem of supervised learning at extremely small 
training set.  The proposed semi-supervised method is expected to reduce the manual annotation efforts and enhance the weed 
mapping researches in the context of SSWM applications. 
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1  Introduction  

Weed mapping is an important step in the context of Specific 
Site Weed Management (SSWM).  With the instruction of weed 
distribution map, the spraying machines can accurately target on 
the weeds, which is of great significance to reduce the use of 
herbicides while maintaining the chemical effects.  In recent years, 
it was widely accepted that the UAV remote sensing offers a 
feasible platform on efficient data acquisition for weed mapping.  
Compared with the traditional satellite remote sensing and piloted 
aircraft remote sensing, UAV can efficiently obtain large scale 
imagery in high spatial resolution, which builds a good foundation 
for the following data interpretation[1,2].  Stroppiana et al.[3] 
proposed an automatic procedure for classification of UAV 
imagery to map weed presence in rice paddies at early stages of the 
growing cycle.  Experimental results showed that best results are 
provided by a set of spectral indices, where the overall accuracy 
was up to 95%.  Later, the weed map was aggregated to a grid 
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layer of 5×5 m to simulate variable rate management.  
López-Granados et al.[4] generate georeferenced weed seedling 
infestation maps in two sunflower fields by analyzing overlapping 
aerial images of the visible and near-infrared spectrum (using 
visible or multi-spectral cameras) collected by an unmanned aerial 
vehicle (UAV) flying at 30 and 60 m altitudes.  Regarding weed 
discrimination, high accuracies were observed using the 
multi-spectral camera at any flight altitude, with the highest 
(approximately 100%) precision recorded for the 15% weed 
threshold.  Gašparović et al.[5] applied the UAV for data collection 
using a low-cost RGB camera.  Classification algorithms were 
based on the random forest machine learning algorithm for weed 
and bare soil extraction, following an unsupervised classification 
with the K-means algorithm for further estimation of weeds and 
bare soil presence in non-weed and non-soil areas.  Experimental 
results showed that proposed methods yields an overall accuracy of 
89.0% for subset A and 87.1% for subset B. 

After data acquisition, data interpretation plays an important 
role in obtaining the weed cover information.  Object based Image 
Analysis (OBIA) and semantic segmentation are two main 
branches to perform the dense classification in weed mapping[6].  
OBIA method generally segments the imagery into several 
homogeneous objects and then performs the classification for each 
object[7-9].  Compared with the per-pixel classification mode, 
OBIA performs the classification in the scale of objects, which may 
reduce the noises and increase the accuracy.  De Castro et al.[10] 
developed a robust and innovative automatic OBIA algorithm on 
Unmanned Aerial Vehicle (UAV) images to design early 
post-emergence prescription maps.  Specifically, the OBIA-based 
plant heights were accurately estimated and used as a feature in the 
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automatic sample selection by the RF classifier.  Gao et al.[11] 
developed a semi-automatic Object-Based Image Analysis (OBIA) 
procedure combined with feature selection techniques to classify 
soil, weeds and maize.  The developed approach was evaluated by 
5-fold cross validation, and it obtained an overall accuracy of 0.945, 
and Kappa value of 0.912.  Compared with OBIA, the semantic 
segmentation performs the weed mapping in an end to end mode, 
which only involves one processing stage[12,13].  Zou et al.[14] 
proposed a simplified U-net architecture for weed mapping.  The 
proposed network was trained by a two-stage training method 
composed of pre-training and fine-tuning.  After training, the 
intersection over union (IoU) of this method was 92.91% and the 
average segmentation time of a single image (ST) was 51.71 ms.  
Sa et al.[15] developed a novel crop/weed segmentation and 
mapping framework that processes multispectral images obtained 
from an unmanned aerial vehicle (UAV) using a deep neural 
network (DNN).  Furthermore, the authors release a large sugar 
beet/weed aerial dataset with expertly guided annotations for 
further research in the fields of remote sensing, precision 
agriculture, and agricultural robotics.  Generally speaking, the 
semantic segmentation algorithms significantly outperform the 
OBIA method in terms of accuracy and efficiency, which have 
more potential in the SSWM applications.  

Despite its superiority, the development of the deep learning is 
limited by its demand for large amount of annotated data.  
Especially in the SSWM context, the natural rice fields are 
complicated and it is hard to annotate the UAV imagery at pixel 
level.  Current solutions mainly contain the semi-supervised and 
unsupervised learning approaches.  He et al.[16] presented 
Momentum Contrast (MoCo) for unsupervised visual 
representation learning.  From a perspective on contrastive 
learning as dictionary look-up, the authors build a dynamic 
dictionary with a queue and a moving-averaged encoder.  MoCo 
can outperform its supervised pre-training counterpart in 7 
detection/segmentation tasks on PASCAL VOC, COCO, and other 
datasets, sometimes surpassing it by large margins.  However, the 
concept of contrast learning is based on the public dataset with 
large amount of categories and unlabeled data, which is not 
appropriate in the context of SSWM researches.  Ouali et al.[17] 
proposed cross-consistency training, where an invariance of the 
predictions is enforced over different perturbations applied to the 
outputs of the encoder.  Li et al.[18] proposed a generative 
adversarial network that captures the joint image-label distribution 
and is trained efficiently using a large set of unlabeled images 
supplemented with only few labeled ones.  However, this 
semi-supervised method is designed for out-of-domain image 
generalization, which is also not suitable in our application 
scenarios. 

To address the shortage of annotated data in the SSWM 
community, we proposed a semi-supervised learning algorithms for 
accurate weed mapping of UAV imagery.  The proposed method 
is based on the current mainstream supervised weed mapping 
algorithms, and is expected to reduce the manual annotation and 
promote the weed mapping researches. 

2  Materials and Methods 

2.1  Materials 
Experiments were conducted in two rice fields located in 

Guangdong Provinces, Southern China, where the rice was in its 
seedling and tillering stages.  The general location of two studied 
fields are shown in Figure 1, where two rice fields are named as F1 

and F2.  The weed control managements are usually taken in the 
early growing stages of rice, thus the weed monitoring in theses 
stages are meaningful for real applications.  

 
a. Rice field F1 

 
b. Rice field F2. 

Figure 1  The general location of the studied sties 
 

In our experiments, the employed UAV is Phantom 4 (DJI 
company, Shenzhen, China).  During data collection, the UAV 
was kept 10 meters from the ground, where the spatial resolution is 
0.10 cm.  The UAV imagery were taken with constant 
overlapping rate, where the forward lap and side lap were set to 
70% and 60%.  The image sequences in each field were 
ortho-mosaicked and split into 1000×1000 sub images to avoid the 
exhaustion of computational resources during image processing.  
The image sequences in one UAV campaign consist one dataset, as 
shown in Table 2. 

 

Table 2  Specification of the dataset  
Name Number of imagery Growth Stage Description 

D1 182 tillering stage Captured on 02 October 2017 in 
field F1 

D2 182 tillering stage Captured on 10 October 2017 in 
field F1 

D3 120 seedling stage Captured on 10 November 2017 in 
field F2 

D4 120 seedling stage Captured on 18 November 2017 in 
field F2 

 

The UAV images were manually labeled at pixel level under 
the instruction of agronomic experts.  The demonstration of UAV 
images and its corresponding labels are shown in Figure 2.  The 
labels are used as the ground truth for training and validation in this 
paper.  The dataset of D1 and D3 are used as the training set, and 
the dataset of D2 and D4 are used as the testing set.  The reason 
for this dataset split is that the training set and testing set are 
collected from different dates, which may evaluate the 
generalization capability of the analysis models. 
2.2  Methods 

The general methodology of this paper is shown in Figure 3.  
In the weed mapping domain, it is well accepted that the semantic 
segmentation is accurate and efficient with large amount of labeled 
data, and the OBIA is relatively slow which is not appropriate for 
real applications.  However, the OBIA method required less 
labeled data.  In this case, we proposed the connection bridge to 
combine the both advantages of OBIA and deep learning.  Firstly, 
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we trained the classifier of the OBIA with limited training samples.  
Secondly, we applied the trained OBIA models to generate the 
pseudo labels for the images without labels.  Finally, we applied 
both the manual annotations and the pseudo labels to train the 
semantic segmentation models.  

 
a. UAV images           b. Label images 

Figure 2  The demonstration of two samples 

 
Figure 3  The general methodology of this paper 

 

2.2.1  OBIA methods 
The OBIA methods mainly consist of three stages: 

segmentation, feature extraction, and classification.  Among them, 
the unsupervised segmentation is the key step which may influence 
the accuracy of the following steps.  In this work, we applied the 
multiresolution segmentation algorithm to generate homogeneous 
objects.  During the segmentation process in multiresolution 
segmentation, the clustering for the pixels is iteratively optimized 
until no significant improvement is found on the heterogeneity.  

To the manual experience of weed identification, the difference 
of the rice and weeds involve color and texture characteristics.  
Therefore, we extracted the color and texture features for the 
discrimination of different categories.  Specifically, we computed 
the mean value of different channels to represent the color feature, 
and used the local binary pattern (LBP) to express the texture 
distribution.  The LBP descriptor use each pixel as center, and 
compares its values with its 3×3 neighborhood.  The comparison 
results are stored in binary number and transformed in decimal 
form and later used to compute the histograms.  Specifically, the 
mean value and the LBP feature features are selected based on our 
previous work on the feature representation for weed mapping[6].  
For the concatenated feature vector, some traditional methods were 
applied for classification, such as BP network, SVM, and random 
forests.  In this research, the classifiers (i.e. BP network, SVM, 
and random forests) are trained with limited annotated samples and 
then used to generate pseudo labels for other samples.  
2.2.2  Semantic segmentation 

In recent years, the deep learning researches developed 

semantic segmentation for pixel level classification tasks.  
Generally, the semantic segmentation model extracted the deep 
representation of the input image via convolutional and down 
sampling operations.  Different from the classification problems, 
semantic segmentation applied deconvolutional methods to restore 
the full spatial resolution in the end to end mode.  In this fashion, 
the spatial details of the input images are retained, which brings 
signification performance boosts in both accuracy and efficiency. 

It was noticeable that the down sampling results in the loss of 
spatial details, and the deconvolutional operation cannot well 
address this problem.  In this case, Long et al.[12] proposed to 
combine the deep layers and the shallow layers of the network to 
achieve better precision.  Similar with the multiscale algorithms in 
object detection[19-21], the skip architecture builds a baseline in 
semantic segmentation to increase the awareness of the objects in 
different scales. 

3  Results and discussions 

In this work, all the experiments were conducted on a 
computer with the i7 6700 CPU and RTX 2080 TI GPU.  Similar 
with most semantic segmentation researches, we applied the pixel 
accuracy, mean accuracy, mean IU and f.w. IU as the evaluation 
metrics.  Among them, the mean IU was generally accepted as the 
main metrics of semantic segmentation. 
3.1  Implementation details 

For the semantic segmentation, the VGG-19 network was used 
as the backbone architecture.  The fully connected layers of the 
backbone network were removed and replaced with convolutional 
layers.  After the deep representation extraction, the 
deconvolutional layers were appended after the network to restore 
the full spatial resolution.  During training, we used stochastic 
gradient descent (SGD) for optimization.  We used the fixed 
learning rate of 10-5.  The momentum was set to 0.99, and the 
weight decay was not employed.  The ImageNet pretrained 
weights were adapted and transferred to our training set, and the 
training was repeated until the model converged on our training set.  
For the OBIA method, the scale, shape parameter, compactness and 
smoothness of the multiresolution segmentation were set to 100, 
0.1, 0.5 and 0.5.  The mean values of three color channels were 
used as the color feature, and the LBP descriptor was applied to 
represent the texture features.  The BP neural network was applied 
for classification of each segment.  We established two hidden 
layers for the BP network, and the number of neurons of each layer 
were set to 10 and 5, respectively. 
3.2  Experiments on skip architecture 

Similar with most semantic segmentation researches, we 
applied the skip architecture to address the spatial loss caused by 
the down sampling operation.  The original framework of 
semantic segmentation is 32 stride upsampling, which is denoted as 
FCN-32s.  We add a 1×1 convolution layer on top of pool4 and 
fused that with the final predictions of FCN-32s, which is denoted 
as FCN-16s.  We continue this fashion and fusion the 
representation form pool3 layer, which is denoted as FCN-8s.  It 
can be seen from Table 2 that adding skip architecture brings no 
noticeable boosts in accuracy.  Though related literatures revealed 
that skip architecture brings slight improvement on performance, 
our research scenario demonstrate similar accuracy with different 
skip strategies.  One possible reason is that the spatial resolution 
of our UAV imagery was not high as the public dataset like 
ImageNet or coco, thus the shallow layers like pool3 and pool4 
cannot capture the details.  Figure 4 gives some prediction results 
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of different skip architecture.  It can be seen from Table 7 that the 
prediction results from FCN-32s, FCN-16s, and FCN-8s are all 
close to the ground truth, demonstrating no significant difference. 

 

Table 2  Experiments on skip architecture  
 pixel acc. mean acc. mean IU f.w. IU 

FCN-32s 86.3% 87.3% 74.9% 76.2% 
FCN-16s 86.1% 84.9% 73.2% 76.1% 
FCN-8s 86.2% 87.1% 73.6% 76.7% 

 
a. Input  
images 

b. Label  
images 

c. Outputs by 
FCN-32s 

d. Outputs by 
FCN-16s 

e. Outputs by 
FCN-8s 

 

Figure 4  The experiments on skip architecture 
 

In our research, we did not consider the inference speed, since 
related literatures have proven that different skip architectures 
shared similar efficiency[1].  Therefore, we chose the FCN-32s as 
the backbone network for the following experiment, since it 
achieved close performance with simplified architecture.   
3.2  Experiments on different training sizes 

In this section, we trained the FCN-32s with different training 
sizes, where the employed training sizes were set to 302, 160, 80, 
40, 20 and 10.  The total training samples of this study is 302, thus 
the training size of 302 represent full training size.  After training 
with different training sizes, the performance of the model was 
reported on all the validation set.  Table 3 gives the accuracy of 
the model with different training set.  It can be seen from Table 3 
that the performance of the semantic segmentation model decrease 
significantly when the training size becomes smaller.  The 
experimental results confirmed that the deep learning model 
requires large amount of training data for parameter optimization, 
and the performance decreases with small training set.  With 10 
training samples, the mean IU of FCN-32s is only 36.6%, which is 
only half of the full training size.  Figure 5c shows that the 
FCN-32s obtained reasonable accuracy on the testing set with full 
training size.  The rice and weeds can be correctly distinguished, 
and the predicted contours are close to the labels.  When the 
training size is reduced to 80 samples, the classification error 
increase significantly, and the predicted contours are different from 
the ground truth, as shown in Figure 5d.  We continue this fashion, 
and the training size was reduced to 10 training samples.  It can be 
seen from Figure 5e that the model misclassified all the weeds into 
rice.  This result demonstrated that too much training on the 
limited training samples caused the typical overfitting problem, and 
the optimizer fall into the local optimization point since the 

category of weeds are in small portion among all samples. 
 

Table 3  Experiments of supervised learning on different 
training sizes  

training sizes pixel acc. mean acc. mean IU f.w. IU 

302 86.3% 87.3% 74.9% 76.2% 
160 84.7% 84.7% 72.4% 73.6% 
80 75.6% 74.4% 57.2% 60.1% 
40 75.6% 75.9% 58.4% 61.4% 
20 68.1% 56.0% 40.3% 50.4% 
10 63.6% 52.8% 36.6% 45.8% 

 
a. Input  
images 

b. Label  
images 

c. Outputs with 
full training 

size 

d. Outputs with 
80 training 

samples 

e. Outputs with 
10 training 

samples 
 

Figure 5  The experiments of supervised learning on different 
training set 

 

3.3  Experiments on semi-supervised learning  
In this section, we chose part of the training samples as our 

training set with varying training sizes, similar with section 3.2.  
Besides that, we applied OBIA to generate pseudo labels for other 
training samples that were not selected.  We applied the 
multiresolution segmentation to generate homogeneous segments, 
extracted the color and texture features to form the feature vector 
for each segment, and used the BP neural network for classification.  
Specifically, our previous work has conducted extensive work to 
explore the performance of different classifiers (i.e.  BP neural 
network, SVM, and random forests), and it was proven that the BP 
neural network achieve the state of art over other classifiers under 
this application scene[6].  The classifier in the OBIA method was 
trained on the limited annotated samples of the training set, and 
later used to generate the pseudo labels for other samples that were 
not annotated.  Figure 6 gives the illustration on the pseudo labels 
generated by OBIA method under different training sizes.  It can 
be seen from Figure 6 that the accuracy of the pseudo labels 
decreases when the training sizes becomes smaller, which is similar 
with the deep learning models.  However, the accuracy of OBIA 
is still acceptable when the training size is extremely small, 
reflecting that the OBIA method does not require that much labeled 
data compared with the deep learning algorithms.  Therefore, the 
pseudo labels generated by the OBIA method is used to provide 
extra training for the deep learning model, which is expected to 
address the overfitting problem of the semantic segmentation 
models. 
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a. Input images b. Label images c. Pseudo labels with  

80 training samples 
d. Pseudo labels with  
40 training samples 

e. pseudo labels with  
20 training samples 

f. Pseudo labels with  
10 training samples 

 

Figure 6  Pseudo labels generated by OBIA method under different training sizes 
 

Table 4 gives the comparison of the traditional supervised 
learning and the proposed semi-supervised learning algorithms.  
It is obvious from Table 4 that the semi-supervised learning 
significantly outperforms the supervised in accuracy especially 
with extremely small training sizes.  Though the performance of 
the semi-supervised models also decreases when the training 
sizes become smaller, the precision is still maintained at an 
acceptable margin.  Figure 7 gives some prediction results by 
the supervised and semi-supervised learning under different 
training sizes.  It can be seen from Figure 7 that when the 
training size is reduced to 80 samples, the accuracy dramatically 
drops with much misclassification, as showed in Figure 7d.  
However, the proposed semi-supervised method still achieves 
reasonable precision, as shown in Figure 7e.  When the training 
size is further reduced to 10 samples, the supervised learning was 
stuck with minimum optimization and cause the overfitting 

problem.  It can be seen from Figure 7f that FCN misclassifies 
all the weeds into rice, since the rice has the largest amount of 
samples and classifying all pixels into rice can lead to a smaller 
loss.  This overfitting problem is also reflected in the 
quantitative results.  It can be seen from Table 4 that most 
supervised models achieve a relatively high pixel accuracy with 
significantly low mean IU value, and this is caused by 
misclassifying other categories into the category that appears 
most.  In contrast, our proposed semi-supervised learning 
algorithm well address this problem, and the weeds can still be 
identified despite that this category is in small portion.  From 
the qualitative and quantitative results, it is clear that the 
proposed semi-supervised learning can well address the 
overfitting problem for the deep learning model caused by the 
shortage of training data, which may improve the generalization 
ability of the deep learning model with limited annotated data. 

 

       

 

a. Input  
images 

b. Label  
images 

c. Outputs by 
FCN with full 
training size 

d. Outputs by 
supervised learning with 

80 training samples 

e. Outputs by semi- 
supervised learning with 

80 training samples 

f. Outputs by supervised 
learning with 10  
training samples 

g. Outputs by 
semi-supervised learning 
with 10 training samples 

 

 

Figure 7  Experiments on semi-supervised learning 
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Table 4  Experiments on semi-supervised learning 
training strategies pixel acc. mean acc. mean IU f.w. IU 

training with full training size 86.3% 87.3% 74.9% 76.2% 
supervised training with 160 samples 84.7% 84.7% 72.4% 73.6% 
semi-supervised training with 160 samples 87.0% 85.4% 75.6% 77.2% 
supervised training with 80 samples 75.6% 74.4% 57.2% 60.1% 
semi-supervised training with 80 samples 75.6% 72.2% 58.2% 63.5% 
supervised training with 40 samples 75.6% 75.9% 58.4% 61.4% 
semi-supervised training with 40 samples 77.9% 71.6% 59.1% 64.5% 
supervised training with 20 samples 68.1% 56.0% 40.3% 50.4% 
semi-supervised training with 20 samples 76.6% 67.7% 55.2% 61.7% 
supervised training with 10 samples 63.6% 52.8% 36.6% 45.8% 
semi-supervised training with 10 samples 75.3% 68.1% 55.4% 61.7% 

4  Conclusions 

This paper collected UAV imagery from the two rice fields in 
its early growing stages at four different dates and constructed a 
weed mapping dataset.  After that, we proposed a semi-supervised 
learning algorithm to address the shortage of annotated data in 
weed mapping with deep learning methods.  Firstly, we 
established an OBIA model, and trained the classifier using limited 
training samples.  Secondly, we used the OBIA model to generate 
the pseudo labels for the samples without ground truth.  Finally, 
we used both the manual annotation and the generated pseudo 
labels for the training of the deep learning models.  Experimental 
results showed that the proposed semi-supervised method 
significantly outperformed the supervised algorithms, and can well 
address the overfitting problem of traditional supervised learning at 
extremely small training sizes.  The proposed method has 
potential in weed mapping research with limited annotated data, 
which may reduce the efforts of manual labeling. 

In the future work, we plan to collect more UAV imagery in 
the natural rice field to enhance the classifier both in training and 
validation.  Also, more sophisticated methods for small training 
set, like few-shot learning or Transformer should be investigated to 
extend the methodology of this paper.  
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