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Abstract: This research aims to solve an obstacle detection problem to enable safety autonomous robot to work in complex 
vineyard environments.  The problem remains challenging because paths planning to avoid obstacles discovered by onboard 
3D LiDAR requires creating and updating a representation of the environment that can be searched by feasible paths.  The 
process is computationally expensive.  In this paper, we proposed a passthrough filter based obstacle detection solution in the 
robot operation system (ROS) architecture without increasing the hardware burden.  In this solution, 3D LiDAR mounted on 
the robot was used to do the tree-row followed navigation and the obstacles detection in different ROS function packages with 
different point cloud processing.  In the proposed solution, the range of interest (ROI) to detect the obstacle can be set by the 
user interface.  The ROI is 0.7 m to 6m in front of the robot header.  To verify the proposed solution, different types of 
obstacles including static small things like boxes, static big items like another robot and moving person were detected in field 
experiments.  Experiments demonstrated that the proposed solution could detected obstacles in determined ROI successfully 
with low computational cost as 10 ms. 
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1  Introduction  

Orchards management requires a great deal of maintenance 
throughout the year, pruning, bloom thinning, spraying for insects 
and disease, and mowing the grass between the trees[1].  These 
activities make up a significant portion of operating expenses and 
improvements in efficiency can directly improve a vineyards 
productivity.  More and more professional farmers recognize the 
potential of automation to reduce chemical exposure to their 
employees during spraying and help reduce the logistical difficulties 
of finding sufficient, skilled, seasonal labor.  

Recent years, autonomous agriculture equipment has become 
more and more feasible with the development of navigation 
technologies including Micro-Electro-Mechanical System (MEMS), 
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Global Navigation Satellite System (GNSS), Artificial Intelligence 
(AI) and so on.  The GNSS receiver with multi-system, multi-band 
and Real-time Kinematic (RTK) can improve the positioning 
accuracy to be several centimeters in the open field[2-10].  Except 
that, the cost of the GNSS-RTK system is lower and lower with the 
development of network RTK.  Consequently, many researchers 
put their attention on autonomous agriculture vehicles, especially on 
precision localization and automatic guidance.  

However, the limitation of GNSS-RTK is also introduced huge 
positioning errors in Non-Line-of-Sight (NLOS) environments 
since of the refraction and diffraction during the satellite signal 
propagation, such as in the orchards and during cloudy days.  For 
example, in mixed LOS/NLOS environments, the accuracy of the 
GNSS-RTK system will decreases from 5cm to 10 meters even to 
100 meters[7-10].  Spatial information collected by Inertial 
Measurement Unit (IMU), 3D LiDAR and RGB-D camera is 
required to localize the agricultural vehicles as accurate as 
possible[11-13].  Except that, the point cloud image or the visual 
image also can be used to recognize the obstacles among the front 
view of the sensors.  In the past several years, a lot of research 
work published on the CVPR have focused on the point 
cloud-based target recognition and target tracking.  

In the year of 2021, we also proposed a tree followed navigation 
algorithm-based vineyard robot named SDUT-PAART-1.  

On most scenarios, SDUT-PAART-1 working in vineyards use 
along the planted tree row and turning around at the end of tree row.  
From the kinematics point of view, it can be decomposed as 
constant velocity (CV) and constant turning (CT) movement in the 
vineyard.  For constant velocity movement, autonomous row 
following has become a popular research area especially in 
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agriculture application because of the standardized planting 
model[9-18].  The task consists of detecting a pathway for an 
agriculture vehicle to follow, using environmental sensors 
including 3D LiDAR, IMU and camera.  

Typically, the path planning problem with obstacle recognition 
is broken down into two subproblems.  The first one solves a 
global planning problem possible assisted by heuristic to ensure the 
path does not fall into local minima.  The second one solves a 
local planning problem that runs in parallel to track the global path 
as well as avoid obstacles.  This method has been adopted 
successfully in autonomous navigation application shown in 
citation[1-3]. 

Based on these previously knowledge, an orchard used moving 
robot is designed and implemented in the year of 2020 and related 
research work is shown in details in the paper proposed by our 
research team[20].  However, the application of the moving robot 
only considered the dynamic models of the robot without proposing 
the obstacles on the way of the robot.  To overcome this weakness, 
we purposed our research to incorporate the obstacle detection 
algorithm into the robot to make sure it can move in the orchards 
safely without any traffic accidents.  

In this paper, we address the problem of obstacle detection 
algorithm for autonomous orchard vehicles moving at a speed of 
less than 1 m/s using only a 64-channel 3D LiDAR.  Our 
algorithm consists different steps summarized as follows.  First 
the 3D point cloud is registered to the vehicle and inertial 
coordinate frame.  Then the registered point cloud is downgraded 
to be simple grid map with position information of the interested 
obstacles.  Finally, obstacles in the range of interest (ROI) are 
recognized with distance to the moving robot.  Passthrough filter 
is employed to filter out obstacles in the ROI. 

The rest of the paper is organized as follows.  Section 2 
describes the.  Section 3 describes the passthrough filter based 
obstacle detection system implemented separately with Raspberry 
PI to verify the ideas and to verify the computational cost.   
Section 4 describes all the experiments implemented in the 
vineyard and evaluated the experiments results.  Section 5 draws 
the conclusion of this paper. 

2  Materials and methods  
To implement and verify the proposed obstacle detection 

system, two sets of hardware is employed.  In the very beginning, 
a Raspberry PI and 3D-LiDAR based embedded system was 
constructed to verify the proposed ideas under indoor environment 
using c++ without ROS.  After that, a Jetson AGX based 
processing system was constructed together with the tree row 
followed navigation algorithm in the ROS architecture.  
2.1  Raspberry PI based system 

An experiment obstacle detection embedded system named 
RPS included the main processer Raspberry PI and the 32-channel 
3D-LiDAR.  

As shown in Figure 1, the RPS can detect 3 different ROI 
regions which can be configured by a Linux script file.  The ROI 
is denoted as 

R_rk = S(R_xk ,R_yk )                    (1) 
Y_rk = S(Y_xk ,Y_yk )                    (2) 

G_rk = S(G_xk ,G_yk )                    (3) 
where rk stands for the ROI, (xk , yk )  stands for the valid position in 
the local coordinate.  Configuration file is shown in Figure 2.  To 
successfully configure the RPS, we should make sure that R_rk is 

smaller than Y_rk  and Y_rk  is smaller than G_rk.  Parameter 
configuration example is shown in Figure 2. 

 

Table 1  Detailed information of the RPS platform 

 Parameter Value 

Lidar 

Precision ±0.7-5 cm 
Frequency 10 Hz 
Detection distance 120 m 
Horizontal resolution 1024 

Raspberry 
PI 

SOC Broadcom, BCM2837B0 
CPU 64-bits, 1.4 GHz 
GPU Broadcom, VideoCore@400MHz 
Memory 8G 

Connector             
USB2.0 4 
Ethernet 1000M 
Wifi                          5 GHz 

 

 
Figure 1  ROI of the RPS platform with Raspberry PI and 

3D-LiDAR, Red range stands for the nearest region while the green 
part stands for the largest region 

 
Figure 2  Configure file of RPS platform. 

 

Definitions of all the pins are shown in the following table.  
(Connector used here is 15EDGkm-3.81 mm with flange terminal.  
Pin numbers are one to six from right to left). 

Definition of the connector is summarized in Table 2. 
 

 
Figure 3  Connector of the RPS platform 

 

Table 2  Definition and description of the RPS platform’s 
connector 

No. IO Explanation 

1 VCC 5-24 V DC power input 
2 GND Ground 

3 OUT1 Output interface 1 (corresponding to the green light), 
output VCC high level when obstacles are detected 

4 OUT2 Output interface 2 (corresponding to the yellow light), 
output VCC high level when obstacles are detected 
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5 OUT3 Output interface 3 (corresponding to the red light), 
output VCC high level when obstacles are detected 

6 GND Pay attention to the ground wire of power supply 
2.2  Jetson AGX based system 

An orchard robot with sensor kit including GNSS-RTK 
positioning system, 3D LiDAR, 2D LiDAR and IMU is employed 
to verify the algorithm proposed in this paper as shown in Figure 1.  
The orchard robot chassis is 2 motor-driven kinematic system. 

 

Table 3  Detailed information of 3D LiDAR, IMU and Encoder 

 Parameter Value 

AGX 

AI performance 32TOPS 

CPU 64-bits 8 core 
NVIDIA Carmel Arm 

GPU 64 Tensor cores 
NVIDIA Volta GPU 

GNSS-RTK 

Satellites 

BDS 
GPS 

GLONASS 
GALILEO 

Antenna 4-frequency 
Precision RTK mode 2 cm 
Communication           CAN 

Lidar 

Precision ±0.7-5 cm 
Frequency 10 Hz 
Detection distance 120 m 
Horizontal resolution 1024 

IMU 
Roll and pitch accuracy 0.25° 
Heading accuracy 1° 
Frequency 100 hz 

Encoder 
Resolution 1000P/R 
Frequency 100 hz 

 

Experiments were implemented in both indoor and out 
environments to verify the proposed obstacle detection system.  
Indoor experiments were implemented on the RPS while the 
outdoor experiments were implemented on the AGX based system 
in the vineyard on an autonomous robot.  The vineyard is in Zibo 
City, Shandong Province.  Weeds and vines in the vineyard are 
regularly pruned, so Robot Perception and navigation are not 
affected.  In order to facilitate the robot to have good traffic 
capacity in special environment such as muddy environment, the 
robot was designed with crawler chassis and driven by server 
motors. 

Considering that the grapevine stalk point cloud above 0.5 m 
from the access road is relatively clean and less affected by weeds.  
The lidar was installed in the middle of the front end of the robot 
chassis, with a height of about 1.0 m from the ground, to adopt 
point cloud data more than 0.5 m from the ground. 

The autonomous navigation system, worked as the main 
processor part of the robot, is used to process the 3D LiDAR cloud 
point information, to implement the navigation algorithms, and to 
manage the navigation information.  The architecture of the 
navigation system is shown in Figure 4.  The navigation controller 
is composed of a main processor NVIDIA Jetson AGX Xavier and 
an auxiliary processor embedded STM32F429 micro-controller. 

 
Figure 4  Description of the orchard robot and the sensors kit 

The main processor AGX is used to run the Robot Operating 
System and 3D point cloud processing algorithms.  The main 
processor is also used to connect to the LCD screen and the 
keyboard.  The auxiliary processor is used to control the motors, to 
read the encoder data.  Serial port is used to communicate in 
between the main processor and the auxiliary processor. 

Multiple sensors are synchronized based on the time of the 3D 
LiDAR.  When the controller obtains the LiDAR data through the 
network port, the odometer data of other sensors under the   point 
cloud time is obtained by linear interpolation.  The point cloud is 
registered by odometer data, and then the point cloud registration is 
optimized by Normal-Distribution Transformation (NDT).  Then 
two lines are fitted by Random Sample Consensus (RANSAC) 
method based on the least square method, and the lines are filtered 
by EKF algorithm with the odometer calculated before as the input 
value.  

 
Figure 5  The robot collects three-dimensional point clouds in the 

vineyard with a running person at the front of the moving robot 
 

2.3  Obstacle detection methodology 
The obstacle detection methodology proposed in this paper is 

based on 3D LiDAR point cloud while passthrough filter was 
employed to filter the point cloud map.  After processing, the 
output binary signal is used into the orchard robot control system to 
start or stop the motivation of the orchard robot.  The whole 
methodology is only added the software cost and computational 
cost without increasing the hardware cost which is usually very 
expensive.  

The proposed obstacle detection algorithm is based on the 
passthrough filter.  Passthrough filter is one of the helpful filters 
in ROS packages, which is used to cut off values that are either 
inside or outside a given user range.  The range is usually given 
by experience.  In our system, the maximum distance of the 
detectable is 7 m and the least distance is 0.7 m.  These 
parameters are determined by the 3D-LiDAR and the mounted 
height of it.   

The orchard environments are complex such as uneven soil 
road and weeds with different heights.  In addition, due to the 
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different planting methods, the trees are planted long, resulting in a 
local area that is not a flat plane.  Therefore, it is difficult to use 
the ground separation algorithm of hardened pavement to separate 
the soil ground.  Here, the method of passthrough filtering is 
directly adopted in this paper, and the segmentation height is set 
according to experience to separate the orchard ground as a whole. 

The proposed obstacle detection methodology is performed in 
three different steps summarized as follows.  First, create the point 
cloud object to be processed, and store the point cloud object after 
the point cloud processing is completed.  Then, set the capacity of 
the point cloud by width + height + length.  After that, set the ‘xyz’ 
coordinates of all points in the point cloud and create a Passthrough 
Filter object and set its filtering parameters to filter the point cloud 
object to be processed as the input of the filter.  Finally, result is 
obtained that the points within the range of x, y, and z set by the 
filter object will be retained, and the points outside the range will 
be discarded to realize the function of pass-through filtering. 

 

 
 

 
Figure 6  Passthrough filtering the point cloud data collected by the 

3D-LiDAR 
 

When the unmanned operation vehicle in the vineyard is 
planning to avoid obstacles, it only needs to plan the plane path, 
and does not need to plan the height direction.  However, 
obstacles at different heights may still hinder the passage of the 
unmanned operation vehicle.  Therefore, during the obstacle 
detection process It is necessary to detect the spatial range of the 
road for unmanned vehicles.  In the planning path, if there is one 
more datum of height dimension, the calculation amount of path 
planning will increase sharply.  Therefore, the obstacle data is 
dimensionally reduced, and its xyz three-dimensional data is 
compressed into the xy plane, as shown in the following figure. 

From Figure 7 it is easy to see that the dimension reduced gird 
map is much smaller than the 3-dimentional point cloud map.  
And the obstacles in both the 2-dimentional point cloud map and 

3-dimentional point cloud map were positioned at the same place in 
the map.  It means that the distance in-between the obstacles and 
the moving robot had not been changed by the dimensionality 
reduction and compression.  But the data size of the point cloud 
map had be greatly reduced by data compression that is why the 
computational complexity and computational cost have been 
reduced greatly.  With several experiments, we have obtained that 
the maximum process time for each frame of the point cloud is less 
than 100 ms.  

 
Figure 7  Data dimensionality reduction and compression 

4  Results and discussion 

To verify the proposed obstacle detection algorithm based on 
the passthrough filter, indoor and outdoor experiments are 
implemented with different parameters.  
4.1  Indoor experiments 

7 sets of experiments had been implemented under indoor 
environments to verify the ROI of the robot with the RPS platform.  
From Figure 8, we can see that when the 3D-LiDAR mounted with 
different heights, the scanning angle of the ROI ranged from   
–15 degrees to 15 degrees.  Each grid is 5 degrees.  Form 
sub-Figure8a to 8g, we can obtain that when the distance 
in-between the moving robot and obstacles is less than 2 m, the 
point cloud recognition result is not so good with too many points.  
Almost all different mounted height of the 3D-LiDAR except the 
2.1 m on shown in Figure 8g, the curve converges quickly when 
the distance is greater than 2 m.  Under this condition, the quantity 
of points in the point cloud map almost less than 1500.  It will 
greatly increase the process speed.  From Figure 8a to Figure 8g, 
we can obtain that for our vineyard robot, we should mount the 
3D-LiDAR with the height of 1.5 m and the ROI should be set to 
be 0.7 m to 10 m to get the best result of obstacle detection and 
lowest computational cost. 
4.2  Outdoor experiments 

To verify the whole system with the autonomous navigation 
parts, the RPS platform is rewritten with in the ROS system as a 
separate function package.  The functional package is 
incorporated into the autonomous system to verified in vineyard.  
From the experiments results summarized in the following table we 
can draw the conclusion that the proposed obstacle detection 
system based on the passthrough filter can successfully identify the 
obstacles in the front of the moving robot.  Response time of the 
system is as low as  80 ms.  The broke distance is around 1 m 
with a moving speed of 1 m/s. 
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a. Different scan angles with distance 30 cm b. Different scan angles with distance 60 cm c. Different scan angles with distance 90 cm 

 
d. Different scan angles with distance 120 cm e. Different scan angles with distance 150 cm f. Different scan angles with distance 180 cm 

 
g. Different scan angles with distance 210 cm 

Figure 8  Indoor experiment results with RPS platform.  Form (a) to (g), different heights of the 3D-LiDAR are mounted on the moving 
robot to obtain the results of obstacles detection with different scanning angles 

 

5  Conclusions  

This paper has proposed a passthrough filter based obstacle 
detection algorithm.  The algorithm is implemented on both the 
RPS platform and the Jetson AGX platform with ROS architecture.  
Indoor and outdoor experiments demonstrated that the real-time 
algorithm could successfully detect the obstacles in the front of the 
moving robot with low computational cost as low as 80 ms.  Also 
we conclude that the best ROI range of our robot is 0.7 m to 10 m.  
Based on experiments results we also draw the conclusion that the 
best mounted height of our robot is around 1.5 m.  To further 
expand our research results, we will test our system on different 
agriculture robots with different heigh and also test different 
3D-LiDAR from different brands with different scanning angles.  
Except that, we also pay attention on the obstacle detection and 
local path planning incorporation algorithm to let the moving robot 
without stopping encounter small obstacles in front of it.  
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