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Abstract: The leaf area index (LAI) of summer maize plays a pivotal role in estimating biomass, photosynthetic potential, 
transpiration, and various other crucial vegetation parameters.  It serves as a vital indicator for evaluating growth progress and 
predicting crop yields.  Unmanned Aerial Vehicle (UAV) remote sensing has proven to be a rapid and non-destructive tool for 
monitoring the LAI of summer maize.  The objective of this study is to enhance the accuracy of the LAI inversion model for 
summer maize by leveraging different optimization algorithms.  To achieve this, we designed varying fertilization levels to 
create distinct canopy structures.  We employed a UAV multi-spectral remote sensing system to obtain 19 vegetation indices, 
which were collected concurrently with ground-based LAI measurements throughout the growing season.  In our investigation, 
we applied multiple linear regression (MLR), Support Vector Machine Regression (SVR), and Random Forest Regression 
Model (RF) to establish regression models between the vegetation indices of summer maize and LAI over the entire growth 
period.  For hyperparameter optimization of the SVR and RF models, we employed the Particle Swarm Optimization 
algorithm (PSO), Whale Optimization Algorithm (WOA), and Grey Wolf Optimization Algorithm (GWO) to search for optimal 
combinations of hyperparameters.  The results demonstrated that Difference Vegetation Index (DVI), Green-Blue Ratio Index 
(GBRI), Standard Greenness Index (NGI), Wide Dynamic Range Vegetation Index (WDRVI), and Vegetation Infrared Ratio 
Index (SR) exhibited high correlations with LAI.  Furthermore, the accuracy of LAI estimation models was significantly 
improved through the application of optimization methods.  Notably, the LAI estimation model established using SVR-GWO 
yielded the highest accuracy (R2=0.912, RMSE=0.607).  In summary, the utilization of optimization algorithms has proven to 
be an effective approach in enhancing the precision of LAI estimation models, with promising applications in agricultural 
research and crop management. 
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1  Introduction  

Presently, unmanned farming and precision agriculture are 
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undergoing rapid development.  The swift acquisition and analysis 
of crop information within farmlands serve as the fundamental 
prerequisite for the implementation of precision agricultural 
practices[1].  Enabled by an integrated agricultural information 
sensing system encompassing aerial, terrestrial, and celestial 
elements, a comprehensive three-dimensional data sensing and 
collection approach is achieved, thereby aggregating vital 
parameters essential for the construction of a repository of data for 
unmanned farming.  This data repository forms the bedrock for 
informed decision-making grounded in scientific methodologies[2].  
In the context of China, corn emerges as a prolific cereal crop, 
underlining the significance of conducting growth monitoring and 
leaf area index calculations, particularly in the case of summer corn 
cultivation.  The Leaf Area Index (LAI) provides a quantitative 
depiction of the interplay between alterations in leaf blade 
dimensions and leaf density within crops.  It stands as a pivotal 
indicator not only for crop photosynthesis and biomass but also as a 
significant agronomic parameter in the context of monitoring crop 
growth and yield[3].  Determining the LAI involves both direct and 
indirect measurement techniques[4-7].  Notably, the direct 
measurement method encompasses leaf collection and subsequent 
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measurement of leaf area.  Although straightforward in operation, 
this method entails a certain level of plant disruption, along with 
the requirement for manual leaf collection—resulting in a 
time-consuming and labor-intensive process.  Furthermore, this 
method's reliance on manual sampling might not ensure a truly 
representative assessment. 

Indirect measurement methods encompass spatial and 
ground-based detection techniques.  Spatial detection leverages 
univariate or multivariate statistical regression models involving 
vegetation indices and LAI, established through the utilization of 
multispectral remote sensing data or hyperspectral data.  Notably, 
a substantial body of research, both domestic and international, is 
dedicated to the utilization of satellite remote sensing 
technology[8-9].  Nonetheless, satellite remote sensing data exhibit 
limitations such as inadequate resolution, susceptibility to 
atmospheric influences and cloud cover, and feature obstructions, 
thereby posing challenges in meeting the demands of precision 
agriculture with regard to accuracy and flexibility. 

In contrast, Unmanned Aerial Vehicle (UAV) remote sensing 
offers notable advantages including heightened resolution, 
diminished atmospheric interference, user-friendly and adaptable 
operations, as well as shortened data acquisition cycles[10-12].  This 
positions UAV remote sensing as an efficient, rapid, and precise 
means of acquiring data concerning crop growth areas.  Li 
Qiang[13], and Shao Yajie[14] have demonstrated the utilization of 
UAV spectral information in the monitoring of crop growth. 

To establish LAI inversion models, machine learning methods 
are frequently employed, with machine learning algorithms 
showcasing robust model fitting capabilities that are pivotal in 
remote sensing data inversion for LAI estimation.  Notably, 
algorithms such as random forest and support vector machine hold 
significant advantages for nonlinear model fitting.  Yang Nan[15], 
for instance, employed random forest, partial least squares 
regression, BP neural network, and support vector machine analysis 
to construct models for estimating both leaf area index and yield 
for wheat.  Shao Guomin[16] similarly employed univariate linear 
regression, multivariate linear regression, and random forest 
regression to estimate LAI for summer maize across various 
irrigation conditions.  Zhang Yaqian[17] developed an inversion 
model for maize leaf area index utilizing two algorithms—partial 
least squares and random forest regression.  These algorithms 
were applied using LiDAR data, vegetation indices, and combined 
LiDAR and vegetation indices. 

However, it's noteworthy that constructing random forest and 
support vector machine models entails the configuration of 
hyperparameters.  These hyperparameters play a pivotal role in 
the accuracy of inversion model construction.  Curiously, the 
aforementioned papers did not delve into the hyperparameter 
configuration during the inversion model construction.  This 
omission could potentially result in models performing well on 
specific datasets but faltering to generalize effectively to different 
data scenarios. 

To address the aforementioned limitations, this study focuses 
on summer maize cultivation within the Zibo Linzi ecological 
unmanned farm.  The research endeavor involves gathering 
multispectral images spanning multiple growth stages, alongside 
corresponding ground truth data for Leaf Area Index (LAI) from 
the same periods.  The overarching goal is to establish an accurate 
unmanned remote sensing model for LAI inversion in summer 
maize, thereby enabling precise predictions of its LAI.  Three 
distinct algorithms—multivariate linear regression, support vector 

machine, and random forest—are employed to create the maize leaf 
area index inversion model.  In parallel, to optimize the model's 
hyperparameters, this study introduces the particle swarm 
optimization algorithm[18], the gray wolf optimization algorithm[19], 
and the whale optimization algorithm[20-21] to fine-tune the support 
vector machine and random forest models.  This comprehensive 
approach contributes to enhancing the accuracy and robustness of 
the LAI inversion model throughout the entire life cycle of maize 
vegetation.  By meticulously evaluating the performance of the 
LAI inversion model under various optimization algorithms, this 
research establishes a summer maize inversion model characterized 
by its ability to generalize effectively.  This holistic methodology 
bridges the existing gaps, ensuring a more accurate and adaptable 
model for predicting LAI in the context of summer maize 
cultivation. 

2  Materials and Methods 

2.1  Study Area and Experimental Design 
The data collection for this experiment was conducted at the 

Ecological Unmanned Farm of the Shandong University of 
Technology, situated in the Linzi District of Zibo City, within 
Shandong Province, China (coordinates: 118.214° E, 36.954° N).  
The regional climate is characterized as a temperate monsoon 
climate, with an average annual precipitation of 650 millimeters.  
The mean annual temperature ranges from 12.5°C to 14.2°C, and 
the average annual sunshine duration spans from 2209.3 to  
2523.0 hours.  The frost-free period typically extends for 190 to 
210 days annually.  The experimental site is characterized by a 
loamy soil profile. 

The present experiment was conducted within an ecological 
unmanned farm, focusing on a near-square corn plot measuring 
approximately 43×43 meters, as depicted in Figure 1.  The chosen 
maize variety was Chunyu958, cultivated with a plant spacing of 
26 cm and a row spacing of 60 cm.  Sowing took place at a depth 
of 5 cm on June 21, 2022.  Harvesting occurred on October 5 of 
the same year, spanning a full lifecycle of 106 days.  To 
accentuate variations in corn growth across the experimental area, 
four distinct field management methods were established. 

 

 
Figure 1  Distribution of Study Area 

 

Compound fertilizer (26-6-8) served as the base fertilizer, 
while second application fertilization employed urea.  On July 26, 
2022, supplementary fertilizer was applied.  The experimental 
groups were stratified into four levels, distinguished by the quantity 
of fertilizer administered: CK (no fertilizer), TR1 (30 kg base 
fertilizer), TR2 (30 kg base fertilizer and 20 kg follow-up fertilizer), 
and TR3 (40 kg base fertilizer and 20 kg follow-up fertilizer).  
The application of fertilizers adhered to the specifications outlined 
in Table 1.  Each fertilization treatment consisted of four 
replicates, amounting to a total of 16 experimental plots, each 
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measuring 10×10 meters and maintaining a 1-meter separation 
between adjacent plots. 

 

Table 1  Test plot treatments 

Treatment base fertilizer (26-6-8) 
/kg·hm-2 

Second application (urea) 
/kg·hm-2 

CK 0 0 
TR1 450 0 
TR2 450 300 

TR3 600 300 
 

2.2  Data Acquisition and Preprocessing 
To mitigate the impact of weather conditions on remote 

sensing images, UAV data acquisition for remote sensing was 
meticulously scheduled during clear and calm weather conditions.  
Additionally, for a comprehensive record of the maize growth cycle, 
data collection was strategically set on July 22nd, August 17th, and 
September 12th, 2022.  UAV remote sensing data was procured 
between 11:00 AM and 2:00 PM Beijing time, while ground data 
collection occurred between 8:00 AM and 4:00 PM Beijing time. 

The multispectral camera employed in this study is the 
Changguang Yuchen MS600 PRO, a six-channel multispectral 
camera boasting a pixel resolution of 1280×960.  This camera 
encompasses six spectral bands, specifically at 450 nm, 555 nm, 
660 nm, 710 nm, 840 nm, and 940 nm.  The camera was affixed to 
the DJI M210 drone, which conducted flights at an altitude of   
30 meters, maintaining a steady pace of 2 m/s.  During flight 
operations, a lateral overlap rate of 70% was adhered to, and an 
overlap rate of 80% was maintained in the heading direction. 

Images of the radiation calibration plate were captured both 
prior to takeoff and after landing.  This plate was positioned on 
the ground.  The drone was positioned approximately 80-100 cm 
above the ground, with its lens oriented vertically downward.  It 
was of paramount importance that no shadows fell upon the 
calibration plate.  These images were acquired to facilitate 
subsequent radiometric calibration, a critical step in the process.  
The Changguang Yuchen Yusense Ref software was employed to 
carry out this calibration. 

The stitching process of multispectral remote sensing images 
was executed utilizing Pix4D.  For geographic alignment, ArcGIS 
software was employed, and mask files were generated using ENVI 
software.  The ENVI software was used to extract canopy spectral 
reflectance from each measurement plot in the multispectral image.  
This commenced with the establishment of the region of interest for 
each measurement plot, followed by the acquisition of 
multispectral reflectance through statistical analysis.  The 
extraction of vegetation indices from the remote sensing image was 
accomplished by employing band operations within the ENVI 
software. 

The primary focus of ground data collection revolves around 
the leaf area index (LAI) of summer maize.  For each plot, three 
measurement plots measuring 1×1 m were randomly designated. 
Within each of these measurement plots, two maize plants were 
chosen at random for assessment.  The yaxin1242 leaf area meter 
was employed to determine leaf area, offering the advantages of 
rapid measurement, user-friendliness, and eliminating the need for 
calibration.  In practice, the leaf area meter was positioned on the 
chosen corn leaf, and upon hearing the dropping sound, the 
measurement process was initiated.  The device was then 
systematically moved from the base of the leaf to its top while 
maintaining uniform motion.  After releasing the button, the 
recorded data was read.  This process was repeated three times for 

each leaf, ensuring robust and consistent measurements. 
2.3  Vegetation Index Selection 

The underlying principle of vegetation indices lies in the 
characteristic behavior of green vegetation or crops, which exhibit 
pronounced absorption in the visible red and blue light bands and 
substantial reflection in the near-infrared and green bands.  The 
formulation of vegetation indices serves as a quantitative 
representation of vegetation growth.  In this research, a 
compilation of 19 distinct vegetation indices, drawn from prior 
studies, was selected and computed.  The detailed indices along 
with their corresponding calculation formulas are outlined in  
Table 2. 

 

Table 2  Vegetation indices 

Vegetation indices Formula 

NDVI ( ) / ( )nir red nir redNDVI R R R R= − +  

SR /nir redSR R R=  

EVI 2.5( ) / ( 6 7.5 1)nir red nir red blueEVI R R R R R= − + − +  

DVI nir redDVI R R= −  

NLI ( ) / ( )nir nir red nir nir redNLI R R R R R R= ∗ − ∗ +  

OSAVI (1 0.16)( ) / ( 0.16)nir red nir redOSAVI R R R R= + − + +  

MNLI 1.5( ) / ( 0.5)nir nir red nir nir redMNLI R R R R R R= ∗ − ∗ + +  

WDRVI ( ) / ( )  ( 0.12)nir red nir redWNRVI aR R aR R a= − + =  

MDD   ( ) / ( )nir red edge red edge greenMDD R R R R= − −  

INT ( ) / 3green red blueINT R R R= + +  

SIPI ( ) / ( )nir blue nir redSIPI R R R R= − +  

NGI  / ( )green nir green red edgeNGI R R R R= + +  

NGI-RGB  / ( )green nir green red edgeNGI RGB R R R R− = + +  

NBI / ( )blue red green blueNBI R R R R= + +  

RBDI red blueRBDI R R= −  

GRDI green redGRDI R R= −  

RBRI red blueRBRI R R= −  

GBRI green blueGBRI R R= −  

VDVI (2 ) / (2 )green red blue green red blueVDVI R R R R R R= − − + +  
 

2.4  Model Accuracy Validation 
For this study, a random sampling approach was employed, 

wherein 80% of the total samples (96) were chosen from the 
dataset encompassing three pivotal fertility periods.  These 
samples were utilized for constructing the model, while the 
remaining 20% (24) were reserved for validating the model's 
performance.  The efficacy of both modeling and validation was 
assessed through the utilization of two metrics: the coefficient of 
determination (R2) and the root mean square error (RMSE).  R2 
serves as a measure to assess the goodness of fit between the 
model’s predicted values and the actual values.  It yields a value 
within the range of 0 to 1.  In simple terms, a higher R2 value 
indicates a superior alignment between the regression model and 
the data, underlining a stronger fit.  Conversely, RMSE 
encapsulates the average error between the predicted and actual 
values of the model.  This non-negative metric indicates the 
predictive accuracy of the model.  Smaller RMSE values signify a 
higher predictive prowess of the model, as the discrepancies 
between the predicted and actual values are reduced.  Conversely, 
larger RMSE values suggest a diminished predictive capacity, 
pointing towards increased disparities between the model's 
predictions and the actual outcomes. 

3  Results 

3.1  Relationship Between LAI and Vegetation Indices 
The vegetation indices from the three distinct maize fertility  
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test plots underwent Pearson correlation analysis with the Leaf 
Area Index (LAI).  The Pearson correlation analysis, which 
gauges the strength and direction of linear correlation between two 
continuous variables, yields values spanning from –1 to 1.  In this 

context, a value of -1 signifies a complete negative correlation, 1 
indicates an absolute positive correlation, and 0 denotes no linear 
correlation.  The outcomes of this analysis are graphically 
presented in Figure 2. 

 
Figure 2  Heat map of correlation between vegetation index and LAI 

 

Simultaneously, a correlation analysis was conducted among 
vegetation indices, where certain vegetation indices exhibited high 
collinearity.  To reduce model complexity and mitigate the risk of 
overfitting, the vegetation indices were subjected to dimensionality 
reduction.  Through this process, six vegetation indices were 
derived: Difference Vegetation Index (DVI), Green-Blue Ratio 
Index (GBRI), Normalized Greenness Index (NGI), Wide Dynamic 
Range Vegetation Index (WDRVI), Vegetation Red-Edge Ratio 
Index (SR), and Intensity Index (INT).  Furthermore, due to the 
minimal correlation coefficient of 0.267 between INT and LAI, the 
correlation between these two variables was noted to be low. 

Based on correlation analyses conducted between vegetation 
indices and Leaf Area Index (LAI), as well as among vegetation 
indices themselves, the selection of input variables included DVI, 
GBRI, NGI, WDRVI, and SR.  Simultaneously, LAI was 
identified as the designated output variable.  Subsequently, the 
maize LAI inversion model was formulated employing three 
distinct algorithms: Multiple Linear Regression (MLR), Random 
Forest (RF), and Support Vector Regression (SVR).  Furthermore, 
particle swarm optimization, grey wolf optimization, and whale 
optimization algorithms were applied to fine-tune hyperparameters 
for the Random Forest and Support Vector Machine machine 
learning algorithms. 

The measured Leaf Area Index (LAI) of maize under various 
fertilization treatments during the critical fertility period is depicted 
in Figure 3.  The LAI exhibited a pattern of increase followed by 
decrease, reaching its peak value in the middle phase of maize 

growth.  The maximum LAI values for the four treatments were 
recorded as 5.29, 6.09, 6.479, and 6.65, respectively.  Notably, the 
control treatment (CK), which received no fertilization, yielded a 
lower LAI compared to the three other fertilization treatments.  In 
the initial stage of corn growth, LAI values for TR1, TR2, and TR3 
were relatively similar.  

 
Figure 3  LAI under different fertilizer treatments at key fertility 

stages 
 

Following the application of fertilizer on July 26, the LAI of 
TR2 and TR3 gradually surpassed that of TR1.  As the corn plants 
entered the late growth phase, their leaves underwent senescence 
and withering, leading to a gradual reduction in LAI across all 
treatments.  Figure 4 displays the mean vegetation index, 
calculated according to the formula detailed in Table 2.   The 
figure clearly illustrates a consistent trend in the vegetation index 
when compared to the leaf area index.   During the initial growth 
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stages to the middle growth stages, each vegetation index exhibits a 
discernible upward trajectory.   However, in the late growth stage, 

the vegetation index aligns closely with the leaf area index, 
gradually declining.  

 
a. CK  b. TR1 

 
c. TR2  d. TR3 

 

Figure 4  Mean values of vegetation index under different fertilization treatments 
 

3.2  Evaluation of LAI Inversion Model Precision 
Out of the total 120 test samples, a set of 96 samples was 

randomly designated for training purposes, while the remaining 24 
samples were reserved as the test set.  The MLR, RF, and SVR 
algorithmic models were leveraged to undertake the inversion of 
the Leaf Area Index (LAI) for summer maize.  The accuracy 
outcomes yielded by each model are succinctly presented in Table 
3.  Among the three algorithmic models, the Random Forest 
regression model demonstrated superior accuracy ((R2=0.865, 
RMSE=0.75), outperforming the other two regression models. In 
comparison to both Multiple Linear Regression and Support Vector 
Machine models, the Random Forest model showcased (R2

 values 
elevated by 0.016 and 0.005, accompanied by lower RMS values 

reduced by 0.041 and 0.013, respectively.  Figure 5 graphically 
illustrates the predicted LAI samples generated by distinct 
regression models, juxtaposed with the actual measured samples.  
Notably, the RF regression model exhibits a notably higher 
concentration of samples aligned around the Y=X curve, 
underscoring its enhanced predictive precision. 

 

Table 3  Maize LAI and vegetation index of different 
estimation models 

Regression model R2 RMSE 

MLR 0.849 0.791 
SVR 0.86 0.763 
RF 0.865 0.750 

 
a. MLR b. SVR c. RF 

 

Figure 5  Maize LAI prediction model with different estimation model 
 

3.3  Model Precision Evaluation with Optimization Techniques 
Employing the Particle Swarm Optimization Algorithm, Whale 

Optimization Algorithm, and Grey Wolf Optimization Algorithm, 
the Support Vector Regression (SVR) and Random Forest (RF) 
algorithmic models were further optimized to reestablish the Leaf 
Area Index (LAI) inversion model for summer maize 
encompassing the entire reproductive period. 

In comparison to using the SVR algorithm in isolation, the 
inclusion of the three optimization algorithms individually has led 
to varying degrees of enhancement in prediction accuracy.  
Illustrated in Table 4, the R2 values for the test set now stand at 
0.905, 0.894, and 0.912, respectively, all of which surpass the 
performance achieved by the unoptimized SVR algorithm (0.86).  
Correspondingly, the RMSE alues are now 0.629, 0.665, and 0.607, 
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respectively, signifying a reduction from the RMSE of the 
unoptimized algorithm (0.763). 

Among the three optimization algorithms, the Gray Wolf 
Optimization Algorithm yields the highest model accuracy for the 
SVR algorithm.  It boasts an R2 value that surpasses those 
obtained using the Particle Swarm Optimization (PSO) and Whale 
Optimization Algorithm (WOA) by 0.006 and 0.018, respectively.  
Additionally, its RMSE value is lower by 0.022 and 0.058 when 
compared to the SVR algorithm utilizing the PSO and WOA 
optimization algorithms.  Figure 6 visually represents the 
augmented accuracy of the SVR inversion model after the 
integration of optimization algorithms. 

 

Table 4  Maize LAI and vegetation index of the SVR model 
after incorporating the optimization approach 

Regression model R2 RMSE 

SVR+PSO 0.905 0.629 
SVR+WOA 0.894 0.665 
SVR+GWO 0.912 0.607 

 

Compared with the RF algorithm alone, the prediction 
accuracies of the optimized RF algorithm with the addition of the 
three optimization algorithms separately are all improved to 

different degrees.  As outlined in Table 5, the R2 values for the 
test set now read 0.897, 0.872, and 0.902, all of which surpass the 
R2 value achieved by the unoptimized RF algorithm (0.865).  
Correspondingly, the RMSE values have now diminished to 0.653, 
0.73, and 0.622, respectively, showcasing a reduction from the 
RMSE of the unoptimized algorithm (0.75). 

 

Table 5  Maize LAI and vegetation index of RF model after 
incorporating the optimization approach 

Regression model R2 RMSE 

RF+PSO 0.897 0.653 
RF+WOA 0.872 0.73 
RF+GWO 0.902 0.722 

 

Among these optimization algorithms, the Gray Wolf 
Optimization Algorithm has yielded the highest model accuracy for 
the RF algorithm.  Its R2 value outperforms those obtained using 
the Particle Swarm Optimization (PSO) and Whale Optimization 
Algorithm (WOA) by 0.005 and 0.03, respectively.  Similarly, the 
RMSE is lower by 0.03 and 0.108 when contrasted with the RF 
algorithm utilizing the PSO and WOA optimization algorithms. 
Figure 8 visually illustrates the improved accuracy of the RF 
inversion model after the incorporation of optimization algorithms. 

 
a. SVR+PSO b. SVR+WOA c. SVR+GWO 

 

Figure 6  SVR model corn LAI prediction model after adding the optimization method 
 

 
a. RF+PSO b. RF+WOA c. RF+GWO 

 

Figure 7  RF model corn LAI prediction model after adding the optimization method 
 

It is noteworthy that the predictive precision of both the 
Support Vector Regression (SVR) and Random Forest (RF) 
algorithm models was consistently elevated when employing the 
Grey Wolf Optimization Algorithm, surpassing the alternative 
optimization methodologies. 

4  Discussion  

The utilization of vegetation indices for maize LAI inversion is 
a widely employed technique in crop monitoring.  These indices 
are predominantly composed of differences and ratios, effectively 
mitigating errors present in individual bands[22].  Previous 
research[23] has indicated that the Standardized Ratio (SR) exhibits 
a robust fitting accuracy to LAI, while the red-edge band 

demonstrates heightened sensitivity in tracking healthy vegetation 
growth.  Additionally, another study[24] revealed that the WDRVI 
displays substantial sensitivity to LAI, with the red-edge band 
showcasing consistent performance across different crop species 
and demonstrating limited sensitivity to soil background. 

In alignment with these findings, the present study yielded 
similar outcomes upon assessing the correlation between vegetation 
indices and LAI.  Notably, vegetation indices such as DVI, EVI, 
NDVI, SAVI, GBRI, NGI, WDRVI, VI, and SR exhibited 
noteworthy correlations with the Maize LAI.  This observation 
underscores the capability of these extracted vegetation indices to 
effectively reflect the growth status of the crop.  These vegetation 
indices were derived through operations on the red band, near-red 
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band, and red-edge band, revealing a significant correlation 
between the maize leaf area index and these spectral bands.  
Moreover, strong correlations were observed among different 
vegetation indices. 

Through a comprehensive comparison of the inversion 
accuracies achieved by Multiple Linear Regression (MLR), 
Random Forest (RF), and Support Vector Machine (SVM) 
regression models across the entire life cycle of the maize LAI 
model, the study determined that all three algorithms demonstrated 
commendable performance, each achieving R2 values surpassing 
0.849.  Notably, the RF algorithm exhibited superior performance.  
Similarly, in the work of SHAO Guomin[16], the effectiveness of 
Random Forest (RF) was also observed in the construction of 
maize Leaf Area Index (LAI) inversion models using both Multiple 
Linear Regression and Random Forest regression methods.  
Corroborating this, Leng Xin[25] found that the accuracy of the 
hyena algorithm neural network surpassed that of the BP neural 
network when inverting the woodland leaf area index.  This 
highlighted the potential for enhancing neural network model 
accuracy through the integration of the hyena algorithm.  
Similarly, Zhang Jin[26] enhanced LAI estimation model prediction 
accuracy by utilizing support vector machine and BP neural 
network models, optimized using the particle swarm algorithm. 

Comparative analysis with the existing literature[26] 
demonstrates the novel contributions of this study in terms of 
optimizing machine learning algorithms for maize LAI estimation.   
Specifically, we have introduced two innovative optimization 
methods, the Grey Wolf Optimization Algorithm and the Whale 
Optimization Algorithm, to fine-tune the hyperparameters of 
Random Forest (RF) and Support Vector Machine (SVM) models.   
Our results emphasize the superior performance of the Grey Wolf 
Optimization Algorithm in terms of speed and accuracy when 
optimizing RF and SVM models, outperforming the traditional 
Particle Swarm Optimization Algorithm. 

The enhanced accuracy achieved by the RF and SVM models 
utilizing the Whale Optimization Algorithm is less pronounced.   
This can be attributed to the algorithm's relatively slower 
convergence rate and limited exploratory capabilities, leading to a 
higher likelihood of converging towards local optima.   In 
contrast, although the Particle Swarm Optimization Algorithm 
enhances accuracy, it suffers from slower convergence speeds and 
increased computational time, thus falling short when compared to 
the Grey Wolf Optimization Algorithm. 

It is evident that RF and SVM models, when optimized using 
the Grey Wolf Optimization Algorithm, consistently exhibit higher 
accuracy.   This success can be attributed to the algorithm's 
enhanced diversity and rapid convergence, facilitating the 
identification of optimal parameter combinations.   The 
application of optimization algorithms to automate the search for 
superior hyperparameters within regression models significantly 
elevates the accuracy of our inversion model.   This, in turn, 
greatly enhances the precision of Support Vector Regression (SVR) 
and Random Forest (RF) in maize LAI estimation, which is of 
utmost importance in the context of agricultural research and 
applications. 

5  Conclusions 

Conducting a correlation analysis on several vegetation indices 
in relation to the Leaf Area Index (LAI) of maize, it was revealed 
that indices such as DVI, EVI, NDVI, SAVI, VI, and SR exhibited 
a robust correlation with LAI.  These vegetation indices exhibited 

a correlation primarily with the red and near-infrared bands.  
Consequently, it can be inferred that vegetation indices associated 
with these bands displayed pronounced correlations with LAI, with 
correlation coefficients reaching values as high as 0.78.  
Additionally, a strong correlation was also observed among various 
vegetation indices. 

In the process of performing regression modeling for Leaf Area 
Index (LAI) and vegetation indices, it was evident that the RF 
regression model showcased superior accuracy in estimating LAI.  
Upon the inclusion of the optimization algorithm, each regression 
model witnessed varying degrees of accuracy improvement.  
When contrasting the Particle Swarm Optimization Algorithm and 
the Whale Optimization Algorithm, the Gray Wolf Optimization 
Algorithm emerged as the frontrunner, yielding heightened LAI 
estimation accuracies for both RF and SVM regression models, 
attaining R2 values of 0.902 and 0.912.  Notably, SVR-GWO 
achieved the highest estimation accuracies.  The incorporation of 
optimization algorithms distinctly enhances the accuracy of maize 
LAI inversion.  Furthermore, the automatic optimization of 
hyperparameters contributes to augmenting the model’s 
generalization capacity. 
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