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Abstract: At present, there is no efficient and accurate method for locating the litchi picking point.  Different from the grapes 
and tomatoes picking, litchi have lush leaves, thick and hard stems, and the biological characteristics (picking points) are 
random.  This paper proposes a fault-tolerant mechanism for distributed target picking.  This mechanism combines the 
morphological distribution characteristics of single litchi and the occluded targets completion method, and transforms the image 
processing problem into supervised learning and nonlinear regression question.  We researched the characteristics of litchi 
stems and growth laws, and divided the picking situation into two categories.  For the first time, we design the target 
fault-tolerant shearing path by utilizing the projection distribution of the normal vector of a single litchi onto the image 
coordinate system.  This approach addresses the challenge of litchi picking with irregular deviation angles caused by the 
influence of gravity.  To sum up, the distributed target fault-tolerance mechanism proposed in this paper combines the 
morphological characteristics of litchis and artificial intelligence technology, which fundamentally improves the positioning 
accuracy of litchi picking points and creates a common and intelligent picking positioning technology method for fruit 
agricultural robots. 
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1  Introduction  

Zou et al., conducted in-depth research on litchi images; they 
carried out the accurate instance segmentation for litchi bunches 
and used the binocular vision positioning to obtain fruit position 
information.  Eventually, they did a simulation analysis in 
dynamic and occluded scenarios and achieved good results[1,2].  
Xiong Juntao et al. analyzed the HSV color gamut model of litchis 
in natural environment, and used fuzzy C-means clustering (FCM) 
to segment fruits and stems; at last, the depth error of picking 
points after image matching and limit constraints rate is less than 
5.64%[3].  The current visual solution of litchi bunching has the 
following shortcomings: (1) the fitting accuracy of the fruit contour 
is poor[4,5].  (2) It possesses insufficient computational capability 
for intricate environments.  This paper proposes for the first time 
divided the litchi picking point location scene into A and B 
categories from the visual system.  The type A picking is the same 
as most bunch fruit picking, such as grapes, cherry tomatoes, etc.  
The bunch fruit picking points are roughly distributed on the 
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mid-line of the geometric center of the bunch fruit included the 
occlusion and non-occlusion scenarios[6,7].  It is worth 
summarizing that a single litchi fruit weighs about 21.4-31.8 grams, 
and the number of litchi bunches generally ranges from 3 to 15.  
Such a weight makes the litchis easy to fall under the gravity[8-10].  
For the vision system, the real picking point P' will form an 
inclination angle between the predicted picking point P and the 
main stem on the mid-line of the bunch contour shape.  This is the 
main reason for low precision of litchi piking[11,12].  Obviously, it 
is the characteristics of this kind of arbor that makes it very 
difficult for the visual system to locate the picking point, resulting 
in the slow progress of mechanized and intelligent picking of 
litchis[13-16]. 

2  Materials and Methods 

2.1  Mask data encoding 
There are complex growth rules among litchi bunch fruit, 

branch and main stem.  In this paper, firstly, we marked litchi 
bunch to find their position in the coordinate system (XOY) (as 
shown in Figure 1).  According to the upper left corner coordinate 
value which is (L1, T1), and the lower right corner coordinate value 
which is (R1, B1), it can obtained the height H (B1-T1) of the litchi 
bunches.  It mark the picking (target) point as P.  According to 
the empirical value, it can get the distance between P and the upper 

surface of bounding boxes (Bbox) of litchi bunch as 
2
H H∼ .  

Secondly, it is assumed that after the mask of each fruit had 
extracted, calculating normal vector of the single litchi contour 
with the contour approximation method, and then it can get the 
angle μ which between the normal vector (NV) and Y axis[17,18].  
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As showing in Figure 1c, by the object tracking algorithm, it can 
get all Bbox and its midpoint of each litchi fruit under the dynamic 
conditions. Taking the first Bbox in Figure 1c as an example, we 

can mark the corresponding mask normal vector as b
G

, the value 
(length) of the normal vector as Y2-Y1.  Finally, the normal vector 
is extracted for each Bbox.  So far, it have transformed the 
engineering problem of locating the litchi cluster into mathematical 
probability distribution problem.  With the feature vector of all 
litchi, it can use the regression algorithm to predict the pixel 
position P(Px, Py).  We mark the mask and the coordinate position 
of the branch intersection point P on the litchi bunch and encode it 
into a neural network format output.�

 
Figure 1  Litchi mask acquisition and contour NV extraction (W 
represents the fault-tolerance distance for picking executed by the 

end effector at the picking point) 
 

The processing of the fruit mask is as shown in the Figure 1b.  
First, it is obtain the pixel coordinate points (Mx1, My1), (Mx2, 
My2)…(Mxi, Myi) on the both sides of mask outline based on the 
midline L.  The distance formula between the two points can be 
defined by the following formula:  

2 2
1 1| | ( ) ( )xi xi yi yiAB M M M M− −= − + −          (1) 

where, M represents the geometric coordinate point of a single 
litchi along its Mask outline, and i represents the i-th coordinate 
value of the point set.  Assuming that LE is a straight line 
perpendicular to the line AB, according to a point on the slope μ1 of 
line, the equation for LE can be defined by: 
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When processing multiple Bbox normal vectors, it is assumed 
that the starting point of each litchi outline NV is marked as B1, 
B2……Bn; The position of the starting point of each NV from point 
P is Y1, Y2……Yn; In this paper, the direction of the normal vector 
is marked in the order from left to right, such as μ1, μ2, μ3……μn, 
their size of the normal vector is Y2-Y1, Y4-Y3, Y6-Y5, ……Yn-Yn-1.  
Correspondingly, the starting point of each Bbox NV are 
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the growth rules of litchi branches, the range of normal vector 
angle of each Bbox is between 45 and 135 degrees parallel to the 
positive direction of the X axis, and the normal vectors exceeding 
this angle range will be regarded as invalid vectors. At last, we 
added loss function Llitchimaxk to Mask RCNN[19,20], training with 
average binary cross-entropy loss.  The multi-task loss function is 
defined by: 

L = Lclass + Lboxes + Llitchimaxk              (3) 

where, Lclass is the classification loss and Lboxes is the bounding 
regression loss; This multi-task loss function can select the anchor 
that contains the maximum target and adjust the position and size 
of the bounding box.  Finally, the bounding box and mask will be 
generated.  The backbone uses ResNet-101 C4 to first obtain 
7×7×1024 features through ROI Align, and then obtain 7×7×2048 
features by Res5.  Here 2048 channels are divided into two 
branches which are classification and regression, and another 
branch is responsible for generating 14×14×80 litchi Mask.  
Obviously, this is faster than learning from scratch the mapping 
between input and output converges fast.  For occlusion targets, 
we use the width and height ratio (WHR) of the Mask output to 
redefine the bounding boxes, and complete the mask of the 
occlusion part to obtain an accurate mask normal vector [21,22].  
The mask redefinition procedure is presented as Algorithm 1. 
 

Algorithm 1.  Redefine bounding boxes procedure 
Input: All litchi instance masks 
Output: redefine bounding boxes and its normal vector (NV) 
1. Obtain contour coordinate points(Mx1, My1), (Mx2, My2)…(Mxi, 
Myi) and calculate |AB1|, |AB2|……|ABn| by distance formula. 
2. For i = 1,2……n 

(1) Defined the max = |ABi|, and find the maximum value of
|ABi|, if max < |ABi|, then the max = |ABi|.   

(2) Assuming that LE is a line perpendicular to segment AB,
according to the slope μi, the equation of LE can be defined by: 
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(3) For a specific slope μi, if {45 135     
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occlusion litchi, then record this mask and redefine the bounding 
boxes according to its mean value. 
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 of valid NV and output the result. 

 

2.2  Target Localization Fault Tolerance Mechanism 
The fault-tolerance mechanism of positioning means that 

within the picking scope of the litchi gripper, when there is an error 
in the positioning picking point, the end effector can take the 
corresponding error compensation, sacrificing a certain part of the 
performance to ensure the system works within an acceptable range.  
Aiming at the bunch picking scene, this paper proposes a 
“distributed target localization method”, which is based on the fruit 
normal vector and target tracking algorithm proposed above.  The 
fault tolerance distance for litchi picking exhibits specific rules and 
a probability distribution.  Statistical errors occur in three 
dimensions.  Initially, there is a visual depth error in the Z 
direction.  Subsequently, the width error in the X direction 
significantly influences the success of the picking process.  The Y 
direction pertains to the reserved length of fruit bunches along the 
main stem, with a relatively high fault-tolerant positioning range in 
this direction.  Assuming the estimated value in the X direction of 
the picking point P follows a normal distribution, it employ the 
Shapiro-Wilke W test method for verification.  the specific steps 
are as follows[23]: 1) With statistical assumption factor H0, the X 
distance values of the picking points are all from normal 
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distribution; 2) According to the estimated normal vector value Xi 
of each bunch of litchi rearrange X1, X2, X3……Xi from large to 
small; 3) According to the Shapiro-Wilk coefficient table, find out 
the Shapiro-Wilk coefficient αin corresponding to the sample size i.  
4) Calculate the value of the statistic W: 
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n is odd.  X is the average estimated values of the target normal 
vector in the X direction.  5) Select the test level β factor (β=0.10, 
0.05 or 0.01), and obtain the corresponding W(n, β) value according 
to the number of samples n and the test level factor β difference W 
distribution table.  6) When W≤W(n, β), the overall sample is not 
normally distributed.  If W>W(n, β), the assumed H0 follow a 
normal distribution.  As shown in Figure 2, between connecting 
the litchi fruit and the main stem, it mark the normal vector of the 

litchi according to the midpoint position of the Bbox, and then 
cluster the picking points from main stem according to the marked 
normal vector.  The picking target point is the midpoint of the 
main stem, and the fault tolerance radius can be defined as R.  If it 
is less than R2, it is the maximum limit fault tolerance radius, and if 
it is less than R1, it is the ideal fault tolerance radius.  The normal 
vector of a single fruit of litchi follows the “unsigned” gradient 
principle.  First, the direction, size, and distance between the 
starting point and picking point of the normal vector between 45 
and 135 degrees are formed into three digital matrices.  It is 
assumed that the position of the starting point of each normal 
vector from the point P is Y1, Y2……. Yn then the vector size and Yn 
are normalized relative to the ground and then accumulated into 9 
array intervals to form a gradient histogram.  These nine array 
intervals 45, 55, 65, 75, 85, 95, 105, 115, 125 and 135, respectively.  
Finally, we judge whether the picking target belongs to the right, 
left or normality distribution according to the number distribution 
map. 

 
Figure 2  Distributed target location method (The blue area is the A-type picking targets, and red area is the B-type target picking) 

 

Finally, it construct the Shapiro-Wilk distribution learning 
model by projecting each normal vector on a line parallel to the X 
axis with taking the projected size of the normal vector ProLi(Yi) 
and the known picking points.  We predict the coordinate position 
of Px through supervised learning, and then judge whether the 
picking stem diameter 1 falls within the target circle with R2 as the 
radius, so there are two expected output values of supervised 
learning: 1) Assuming that the target circle with radius R1 is the 
preferred picking (PP), 2) A ring of radius greater than R1 and less 
than R2 is Alternative picking (AP).  The algorithm workflow of 
distributed target fault-tolerant mechanism is presented as 
Algorithm 2. 

 

Algorithm 2.  Target fault-tolerance procedure 
Input: All litchi normal vector 
Output: The predicted coordinate value of the Px 
1. From the algorithm 1, it can get the starting coordinates of the
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sizes or angles μ1……μn, and then moved all NV starting points of
their bounding boxes to the line segment paralleled to the X-axis. 
For multiple bounding boxes, the Line segment is labeled as Line
1……Line i.   
2. Through the angle between NV and Line i (μ1+90)……(μn+90), 
 

For i in n, the number of vectors μn+90 in the nine array intervals 
45, 55, 65, 75, 85, 95, 105, 115, 125, 135 was calculated to 
determine which kind of distribution the picking points belonged 
to. 
3. For i in n, it calculate the size of ||NVi||cos(μn+90), assuming that 
the projected size of the vector is denoted as ProLi(Yi). 
4. According to the Shapiro-Wilk coefficient table, find the
Shapiro-Wilk coefficient αin of the corresponding vector projection 
size ProLi(Yi)i.  Calculate the value of the statistic ProWi, 
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5. Output the subtraction value of the ProWi – P′x, import to
supervised learning model.  Finally, it output Px position again. 
 

2.3  Handling Occluded Class B Targets 
For the occluded target, this paper firstly processes the depth 

information of the constructed single litchi, and then determines the 
spatial position by combining the target location fault-tolerance 
mechanism.  Assuming that the depth distance of litchi in the 
RGB-D depth camera is L, then the distance between the depth 

camera and the geometric center of the single fruit is ( 3.5
2

L + ) cm.  
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Because the diameter of litchi is generally 3~4 cm, we take 3.5 cm 
here.  As show in Figure 3, this paper draws a three-dimensional 
schematic diagram of the litchi picking area.  Firstly, the top layer 
represents the longest distance that the robot end effector can reach 
along the litchi stem diameter.  In single fruit detection, this 
distance is twice the longitudinal length of the fruit.  In the brunch 
fruit detection, the distance is the sum of the preset fault-tolerance 
distances T1 and T2.  Secondly, here is the central layer, which is 
the optimal picking space.  The Point P in the figure is the optimal 
picking point.  Assuming that the height of the litchi target 
detection frame at this point is H, then the height of point P should 
between H/2 and 2H.  Whenever the position of point P is 
determined, the bottom layer is along the positive Y-axis direction 
T2 and parallel to the XOZ plane.  The steps for determining the 
depth distance of point P for occluded litchis are as follows: 1) 

First, the value of H is determined by the object detection, and then 

the range of the value of Py is calculated as 1 2( )
2

T T+  by using the 

coordinates of the lower right corner of the object detection. 
2) Through the mathematical statistics method, it is use the 

fault-tolerance mechanism in Section 2.2 to estimate the PX 
coordinate value.  3) Obtain the depth information of each fruit 
through the depth camera, assuming that the depth information of n 
litchis is L1, L2……Ln,  

Through the conversion between the camera and the world 
coordinate system, we can get the depth information D1, D2……Dn 
of each litchi in the XOY coordinate system.  After the calculation 
of the normal vector starting point, all position of the point P is Y1, 
Y2……. Y, then we can get the coordinates of PZ and the values of 
R1 and R2. 

 
Figure 3  3D model of single and bunch fruit picking 

 

As mentioned in the section 1, the mathematical models are 
explained according to the end-effector shear position.  As for the 
fruit picking in Figure 3a, we directly used the visual system to 
locate the target, and conducted the test on whether there existed 
occlusion.  For the scenario shown in Figure 3b, this paper made a 
compatible path design based on the path planning of end-effector.  
Since litchi fruit distribution is random, it is difficult for the visual 
system to judge type A and B based on the fruit distribution.  The 
solution of this paper is to design the cutting route of the 
end-effector.  As shown in Figure 4 below, It is assumed that the 
angle between the horizontal line (X-axis) and the line which 
between the predicted picking point P and real picking point P' is β, 
and the shear angle of the end-effector is also set to β. After 
determining the picking point of type A, the vision system will 
feedback whether it can cut the cross-fruit rod diameter at position 
P through force sensing.  If it fails to cut at point P, the 
end-effector will take β as the cutting angle and Dend as the linear 
moving distance for secondary cutting.  In this way, the picking 
success rate of litchi fruits can be improved among target range.  
Similarly, fault-tolerant design was carried out at P and P' for the 
picking range of the target, as shown in Figure 4.  The target P 
was cut within the effective fault-tolerant radius of R2.  For litchi 
cross fruit picking of type B, the target P will be repositioned to P' 
for picking by calculating Dend. 
2.4  Dynamic Target Tracking and Matching Strategy 

There are four main requirements for target tracking in litchi 
picking: 1) In the case of dynamic situation, litchi are not detected 
due to occlusion, and the tracker can predict the target object[24, 25].  
2) Target tracking can assign a unique ID to each string of litchi, 

and bind each three-dimensional coordinate to the corresponding 
box[24].  3) Trackers are usually faster than detectors and can 
increase real-time performance[26].  4) The visual tracking and 
precise positioning of picking points in a dynamic environment can 
fundamentally improve the work efficiency of fruit picking robots.  
Multiple object tracking (MOT), is a versatile experimental 
paradigm developed by Zenon Pylyshyn for studying sustained 
visual attention in a dynamic environment in 1988[27].  In case of 
low frame rate and large camera motion, we must improve the 
MOT methods to learn object motions and achieve more robust 
results.  Bytetrack uses the similarity between the detection frame 
and the tracking trajectory to remove the background from the 
low-scoring detection results while retaining the high-scoring 
detection results, mining occlusion, blur and other samples, thereby 
reducing missed detection and improving the coherence of target 
tracking trajectories[28]. 

In terms of detectors, here we use the YOLOX as the detector 
of the litchi fruit[29,30].  YOLOX boasts a more robust advanced 
label assigning strategy (SimOTA) and a decoupled detection head 
compared to the YOLO series.  The YOLOX Head utilizes three 
feature maps generated by the Feature Pyramid Network (FPN) to 
ascertain the presence of objects at the corresponding feature points.  
In contrast to the previous YOLO Head, which combined 
classification and regression in a single convolution, the YOLOX 
Head independently handles classification and regression before 
integrating them.In terms of tracker, this paper uses the Kalman 
filter algorithm to define the KalmanFilter class[31,32].  The code 
implementation process is divided into 6 parts: (1) Class 
initialization __init__, (2) Initialize the function of state (mean) and 
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state covariance (covariance), (3) Prediction stage function predict, 
(4) Distribution conversion function project, (5) Update phase 
function update, (6) Calculate the distance function gatingdistance 
between the state distribution and the measurement (detection 
frame).  In terms of matching strategy, this paper uses the IoU 
score to judge.  With the movement of the lens or the relative 
movement of the object and the camera, the aspect ratio of the 
object will also change; the implementation steps of this part of the 
code are: 1) There are two categories: high-scoring box + 
low-scoring box.  2) For the first time, use the high score box to 
match the previous trajectory.  3) For the second time, use the 
low-scoring box to match the tracked trajectory of the high-scoring 
box that did not match the first time.  4) For the high-scoring 
boxes that do not match the upper track, create a new tracking track.  
For the tracked trajectories that do not match the detection frame, 
30 frames are reserved so that they can be matched again later.  
Suppose a video sequence V is input through the camera, the 
detection result returned by the target detector is Det, and the Det 
is a data container that contains bounding boxes, scores and class 
ID information output by the detector.  For each frame from video 
sequence V, we set a detection score threshold α.  Based on this 
threshold, we separate all the detection boxes into high part Mhigh 
and low part Mlow.  The method used in this paper is to first 
combine the tracks T and high-scoring Mhigh of the tracker to 
calculate the IoU and Re-ID feature distances of the target to be 
tracked.  The Hungarian Algorithm is then used for similarity 
matching[33].  We mark the remaining unmatched detection boxes 
and tracks as Mremain and Tremain, respectively.  Second, we 
combine Mlow and tracks Tremain that have not been matched for 
similarity evaluation.  The purpose of this is to track some litchi 
fruits that are occluded, blurred, or whose shape features are not 
very obvious.  IoU (Intersection over Union) is a standard 
performance measure for image class segmentation problems.  For 
a given set of images, this project improves MST-IoU by giving the 
ratio of the intersection and union of predicted and ground-truth 
candidate boxes.  Suppose t is the probability output of the pixel 
set N after the activation function in the fruit or cluster feature layer, 
and Y is the real candidate box dataset.  Here {0,1}MY ∈  means 
0 is a non-target pixel and 1 is a detection target pixel.  So: 
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In the multi-target detection training process, NMS calculates 
and sorts the candidate box list and confidence C of the candidate 
region, and selects the test box with the largest score.  Then 
calculate the IoU coefficients of other scoring boxes and the current 
box, and delete if the IoU is greater than the set threshold.  This is 
an iterative process.  In this process, NMS is used to select a 
certain maximum score box.  Then the second iteration will select 
the highest score in the remaining boxes and delete those that 
exceed the set IoU threshold until all possible targets in the picking 
target are obtained.  After the residual network and the 1×1 
convolutional layer, a large number of candidate boxes will be 
generated on the candidate region output by the output feature map.   

In terms of matching strategy, the visual strategy from 
“coarse” to “fine” enables the robot to quickly complete the target 
search task.  Aiming at the long-range image of fruit clusters with 
a large number of litchi and inconspicuous branches, K-means 
density clustering is proposed to study the field of view division.  
This enables the litchi fruit field data to be divided into K 

predefined categories, and each data point is clustered into a 
picking object.  The specific principle function is as follows: 
Assuming that there are m single litchi samples, first of all, the 
multi-sample function on the K value is introduced here,  

2
1 1
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ik ki k
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= −∑ ∑           (5) 

If the single litchi center point t(x,y) belongs to cluster K, then 
σik=1, or σik =0; This time μk is the centroid t(x,y).  If the 
derivative of the F function minimizes the solution of the equation, 
the problem is transformed into:  
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We need to differentiate F, and recalculate the centroids after 
the previous clustering iteration, obviously data points t(x,y) will be 
assigned to clusters that are close.  The centroids of each cluster 
are naturally recalculated according to equation (3) below to reflect 
the new data point assignments.   
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After the screening of K-means, in the previous experimental 
test, the multi-objective fruit-picking field-of-view partitioning 
algorithm in this paper is direct and efficient.  With the 
self-developed vision system, the computing speed performance is 
greatly improved, and the data dimension is effectively reduced. 

3  Results and Discussion 
3.1  Experiment setting 

The litchi picking in this paper can be divided into A and B 
scenarios (as show in Figure 2).  The litchi pictures were collected 
in Guangdong Province, China.  If the occlusion area of leaves or 
branches is greater than 30%, the sample will be considered as an 
occlusion target.  The dataset presented in this paper comprises 
2000 litchis captured in their natural environment, each with 
dimensions of 1061 by 640.  Additionally, there are 200 
validation sets equipped with RGB-D depth information.  The 
experimental setup utilizes the TensorFlow framework, with 
hardware specifications including an Intel Core i7 CPU, 16GB of 
memory, and a GeForce GTX 3060 Ti GPU featuring 8GB of video 
memory.  The GPU runs on CUDA version 11.0 and CUDNN 7.4.  
The operating system employed is Linux, specifically Ubuntu 
18.04 LTS.  In addition, in this paper, the ProtoBuf serialized 
structure protocol is used to store the weight information which 
called Open Neural Network Exchange (ONNX) Neural 
Network[34].  This is a platform independent and programming 
language independent efficient protocol.  In order to obtain the 
optimal training results, transfer learning is used to train the 
pre-trained model on COCO dataset.  After testing, the 
pre-training based on COCO data has fast convergence speed and 
high initial performance of the model.  In the training process, the 
transfer learning model can get the improvement fast. 
3.2  Object Detection Evaluation 

This paper employ YOLOX, YOLOv5, CenterNet, and 
EfficientDet as multi-target trackers to assess target detection using 
both individual litchi instances and litchi clusters[35,36].  As can be 
seen from Table 1, YOLOX-DarkNet53 achieved the best mAP, 
followed by YOLOV5 with 60.68% mAP.  The difference 
between YOLOX and YOLOV5 is in the head part of the detection 
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network.  YOLOX is anchor free, and its head directly predicts 
four target Bbox parameters at each position.  The Figure 5 below 

shows that YOLOV5 uses the K-means algorithm to screen anchor 
boxes. 

 
Figure 4  In-depth information collection platform 

 

Table 1  Detector Performance Comparison 

Model AP/% FPS Parameters AP50 AP65 AP80

CenterNet 48.34 12 74.99M 62.8 59.3 55.2 
YOLOX-DarkNet53 65.30 30 87.80M 86.5 82.7 78.6 
EfficientDet 58.50 15 52.40M 75.4 70.8 66.5 
YOLOV5-DarkNet53 60.68 22 90.43M 73.2 72.4 60.2 
YOLOV3- DarkNet53 58.92 28 63.72M 87.9 76.1 70.9 
 

 
Figure 5  K-means cluster of YOLO V5 anchor boxes 

 

The detection head of YOLOV5 can simultaneously predict the 
category score, bounding box regression parameters and objectless; 
YOLOX replaces the coupled head with the decoupled detection 
head, greatly improving the convergence speed of the network.  In 
terms of FPS comparison effect, YOLOX still reached the highest 
30fps.  Although the mAP of YOLOV3 is the highest when the 
IoU is 50, when the IoU value is 65 or 80, YOLOX has a 
significant effect on improving the accuracy.  In summary, the 
following will focus on comparing the detection effects of different 
versions of YOLOX, so that we can select the fastest and best 
detector for target tracking of a cluster of litchi. 

YOLOX and YOLOV5 have different versions.  For single 
litchi detection, this paper only compares their S versions.  We 
use 640×640 as the image input.  As shown in Figure 6 below, the 
model training is divided into two steps.  The first step is to freeze 
the training, that is, only train the backbone part.  And the 
learning rate is set to 0.01-0.001, the number of iterations is 50, and 
the number of samples for each iteration is 4.  The second step of 
training is the entire detection network, the initial learning rate is 
set to 0.001, the number of iterations is 150-200, and other setting 
parameters are shown in Table 2. 

In the 200 training epochs of YOLO5 and YOLOV5, the 
convergence speed of the loss function is relatively fast in the first 
50 iterations.  This shows that freezing the network is a relatively 
optimal solution.  The training loss function of YOLOV5 starts to 
slow down at the 80th iteration, and starts to converge after about 
160 iterations.  The validation loss function curve of YOLOV5 

began to oscillate relatively large at the 60th iteration, and did not 
begin to converge until the 180th iteration.  Both the training and 
validation loss function curves of YOLOX gradually stabilized 
after the 150th iteration, and did not change significantly after the 
200th iteration.  Therefore, this article finally selects the weight 
file saved in the 200th (non-frozen) epoch of YOLOX. 

 
Figure 6  YOLOX-S-640 VS YOLOV5-S-640 

 

Table 2  Training parameter setting 

Parameters YOLOX-m YOLOX- 
MaskLabel YOLOV5-m YOLOV5-

MaskLabel

Mosaic True True False False 
Mixup True True False False 

Freeze Epoch 50 0 100 50 
Unfreeze Epoch 150 200 150 200 

Initial lr 0.001 0.001 0.01 0.01 
Optimizer SDG Adam SDG Adam 

 

There are multiple versions of YOLOX.  Considering the 
demand to deploy YOLOX on mobile robotic arms or embedded 
systems, this article tests and compares the nano, tiny, s, and m 
versions of YOLOX.  As can be seen from Figure 7 below, when 
training 200 epochs and the score threshold is both 0.5, the 
YOLOX-nano-416 version with 416×416 as input has the highest 
accuracy of 84.96%.  It is worth noting that in the model with the 
same 640×640 input, the accuracy of YOLOX-m is 74.29%, while 
the accuracy of YOLOX-s is only 69.23%. 
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Figure 7  YOLOX precision with different version 

 

From the F1 curve of YOLOX nano (Figure 8), the confidence 
value of optimization precision and recall rate is 0.5.  In most 
cases, a higher confidence level is desirable.  But for this model, 
the best choice may be when F1 is 0.70, and the confidence level is 
0.43.  Because when F1 is 0.72, the confidence of the model will 
reach the maximum, and 0.70 and 0.72 are not far away.  
Observing precision and recall values with a confidence value of 
0.5 also confirms that this may be a suitable design point.  From 
around 0.5, the recall rate starts to decrease, and the accuracy rate 
is still roughly at the maximum value.  In addition, it can be seen 
from the F1 curve of YOLOX-m that the confidence of the optimal 
precision and recall is 0.73, which starts to decrease from 0.83.  
Overall, the F1 curve of YOLOX-m is better than that of 
YOLOX-nano, but this cannot accurately evaluate all models. 

 
Figure 8  YOLOX-NANO VS YOLOX-M 

 

For the single fruit detection model of litchi that are ripe and 
ready to be picked, the mAP of YOLOX-nano reached a maximum 
of 78%, followed by the mAP of YOLOX-m, which also achieved 
an ideal 76%.  YOLOX-tiny and YOLO-S are 0.73 and 0.69 
respectively.  The analysis of experimental data shows that the 
target detection using YOLOX can meet the requirements of target 
tracking detector to a certain extent.  In addition, different 
versions of YOLOX algorithm can run on embedded and mobile 
systems.  For single fruit detection, YOLOX-m is used in this 
paper.  As can be seen from Figure 13 below, target detection of 

single fruit can achieve good results at different distances, and can 
also achieve high precision positioning.  In addition, the algorithm 
can also recognize single fruits with occlusion.  The following 
will be based on target detection, plus target tracking to analyze the 
positioning effect of litchi dynamic picking.  Figure 14 shows the 
effect of fruit bunching detection.  The fruit bunching detection 
mainly determines the approximate size of the fruit bunching 
outline through “coarse” positioning, and then determines the 
values of H, L1, T1, R1 and B1, according to the mask data encoding 
in Section 2.1 of this article. 
3.3  Target Tracking Evaluation 

For the dynamic tracking of litchi bunches, this paper uses the 
multi-target tracking algorithm for comparison.  After the litchi is 
occluded, the target detection often loses the tracking ID.  The 
tracking ID can affect the relative position of the litchi fruit and its 
direction of the normal vector.  After improving the accuracy of 
target detection, In addition, the impact of the target fault-tolerance 
mechanism on positioning in a dynamic environment must be taken 
into account.  We utilize multiple object tracking accuracy 
(MOTA) and multiple object tracking precision (MOTP) as metrics 
to assess the tracking performance.  The MOTA can be defined by 
formula: 

( )
MOTA 1 t t tt

tt

m fP mme
g

+ +
= − ∑

∑
        (9) 

where, mt is FP, the number of missing (missed detection), that is, 
the target has no hypothetical position match in frame Pt is the 
number of false positives, that is, there is no tracking target match 
at the hypothetical position given in the t frame.  The target 
tracking experimental samples in this paper include ripe and 
immature lychee fruit bunches.  Initially, we capture an indoor 
mp4 video, which is subsequently imported into the program for 
tracking.  The tracking parameters are configured with a track 
threshold of 0.5 and a track buffer of 30.  Additionally, the match 
threshold is set at 0.5, and the minimum bounding box area is 
specified as 10.   This paper compares multi-target tracking 
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algorithms such as sort, deepsort, and bytetrack.  As showing in 
Table 3, for different detection score thresholds, the IDF1 and 
MOTA of bytetrack are relatively high.  When the score is equal 
to 0.5, the IDF1 of bytetrack is 89, and the IDF1 of deepsort is 85.  

In the comparison of MOTA, we found that bytetrack can reach up 
to 88, but deepsort can only reach up to 79.  To sum up, this 
article adopts YOLOX for the detector’s bytetrack, locate and track 
the single or bunch fruit target. 

 
Figure 9  The detection effectiveness of litchi clusters based on instance segmentation algorithms 

 

Table 3  IDF1 and MOTA comparison 

SCORE IDF1- 
BYTE 

IDF1- 
SORT 

IDF1- 
DEEPSORT

MOTA- 
BYTE 

MOTA- 
SORT 

MOTA- 
DEEPSORT

0.2 75 52 72 62 66 72 
0.3 81 62 78 79 68 78 
0.4 80 70 80 82 70 74 
0.5 89 66 85 88 77 79 
0.6 88 60 80 87 75 51 
0.7 84 55 76 82 55 52 
0.8 64 51 72 65 44 50 

 

In addition, this paper uses bytetrack to conduct object tracking 
tests on mature and immature litchis.  The evaluation metrics are 
MOTA, MOTP, MT (Mostly Tracked) and ML (Mostly Lost).  
MT refers to the proportion of tracks that meet Ground Truth at 
least 80\% of the time in all tracking targets.  MT mainly 
measures the performance of the detector.  ML refers to the 
proportion of tracks that satisfy Ground Truth that only matches 
successfully in less than 20\% of the time among all tracking 
targets.  The data in Table 4 illustrates that mature litchis are more 
readily tracked, evidenced by a MOTA value of 51.30 and MOTP 
value of 82.82.  In comparison, immature litchis exhibit less 
distinct spectral information; however, they still align with the 
mature MT and ML indicators, with litchi values showing 
relatively minor differences.  This indicates that the bytetrack 
algorithm is proficient in effectively tracking litchi bunches of 
varying maturities. 

 

Table 4  Bytetrack for tracking lychee at different ripeness 
levels 

 MOTA MOTP MT ML 

Ripe_litchi 51.3 82.82 26.11% 38.70% 

Unripe_litchi 42.8 75.23 21.66% 35.70% 
 

In the detection of 3 consecutive frames, it can be seen that 
bytetrack can track single litchi when the leaves are occluded.  
Such tracking information can not lose the its normal vector in the 
dynamic environment when the target is located, thereby improving 
the target location accuracy in Section 2.2.  The detection boxes 
of different colors in the figure represent different tracking IDs.  
In the case of no occlusion, our locked IDs can perform continuous 
tracking between 3$\sim$5 frames. 

4  Conclusions 

This paper breaks through the traditional fruit cluster location 
method, and proposes a litchi picking point location method based 
on visual system and engineering technology.  This method 
combines the morphological characteristics of litchi with the data 
association method of occluding targets for visual collaboration, 
transforms the image processing problem into a non-linear 
regression problem, and overcomes the common fault-tolerance 
technology of fruit cluster picking with irregular offset.  In 
general, the conclusions of this paper mainly include the following 
parts: (1) It is proposed that the location scene of litchi fruit cluster 
picking points can be divided into two categories: one scene is the 
same as grapes and tomato, and the picking points are distributed 
near the centerline of the geometric shape of the fruit cluster; In 
view of the irregular offset angle caused by the drooping of litchi 
clusters under the action of gravity, this paper defines it as other 
scene, which is solved by the distributed single fruit positioning 
and the design of picking targets for the first time.  (2) Breaking 
through the traditional research on litchi target detection, combined 
with the characteristics of crop production technology and growth 
law of fruit clusters, a target location fault tolerance mechanism 
based on the geometric shape distribution of litchi single fruit 
(mask method vector) is proposed.  This mechanism can not only 
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redefine the occlusion target according to the width to height ratio 
(WHR), but also accurately and efficiently locate the location of 
litchi fruit cluster picking target.  (3) This paper investigates the 
target picking mechanism under both static and dynamic conditions.  
The experimental findings demonstrate that the litchi fruit cluster, 
utilizing the target location mechanism, yields favorable outcomes 
in both static and dynamic environments.  Notably, when dealing 
with occluded cross-fruit targets, dynamic target tracking is 
employed to compute the mathematical model of the picking point.  
This approach effectively addresses the challenging task of locating 
the picking point under occluded conditions, offering a versatile 
technology with high efficiency and accuracy for cross-fruit 
picking. 

The paper faces challenges in litchi picking accuracy relying 
on a precise camera calibration system, hindering accurate 
quantification of target point positioning.  Efforts focus on 
deploying a robotic arm for experiments to enhance positioning 
accuracy and address issues like low frame rates and detection 
timeliness in litchi detection through the camera. 
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