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Abstract: Tobacco is a significant economic crop in China, but it is susceptible to various diseases and insect pests, including 
the highly contagious tobacco bacterial wilt disease.  The disease can cause severe damage with no possibility of eradication 
once it occurs.  In this study, we collected hyperspectral and visible light data of tobacco seedlings at different stages of the 
disease development and compared the detection performance of the two methods.  We proposed the XGBoost ensemble 
learning algorithm to construct a detection model for tobacco bacterial wilt disease based on the characteristic bands selected 
from hyperspectral data.  The model achieved an accuracy of 92.20% for all samples.  Additionally, an improved model 
Tobacco-AT was designed based on visible light images, introducing the attention mechanism with focusing function into the 
current popular target detection model framework, achieved high accuracy on tobacco bacterial wilt data set.  Detection 
performance of the two methods was compared, and the results showed that the hyperspectral model had an accuracy of 69.57% 
on the first day after inoculation, while the accuracy of Tobacco-AT was only 54.66%.  However, the accuracy of visible light 
based method (Tobacco-AT) was close to that of the hyperspectral based method at 85.00% and 86.36% on the third day, which 
demonstrates the potential of visible light technology for early detection and the possibility of being a low-cost solution. 
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1  Introduction  

Tobacco is a crucial economic crop in China, contributing 
significantly to the country’s national income.  Tobacco bacterial 
wilt is one of the main diseases of tobacco in tropical and 
subtropical regions, with a local incidence rate of more than 80% 
and often mixed with tobacco black shank disease.  Severe cases 
can cause the entire field of tobacco to wither and die, making it a 
significant threat to tobacco farmers' livelihoods[1,2].  Furthermore, 
the disease is highly contagious, and once it occurs, it can quickly 
spread throughout the entire field, even resulting in crop failure.  
Therefore, it is very important to obtain timely and accurate 
information on the status and spatial distribution of tobacco 
bacterial wilt in order to reduce secondary infection through 
biological control and even early removal of susceptible plants[3].  
However, traditional tobacco bacterial wilt detection methods, such 
as field investigation, manual identification and chemical detection, 
are often time-consuming, inefficient, expensive and even 
destructive[4].  Therefore, non-contact, non-destructive, advanced 
and automated detection methods are favored by researchers and 
farmers.  They can provide accurate disease information in near 
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real time[5], which is helpful to achieve the purpose of early 
detection of bacterial wilt and cultivation of tobacco varieties with 
high resistance to bacterial wilt. 

After being infected by the pathogen resulting tobacco 
bacterial wilt, the leaf mesophyll cells undergo destruction, leading 
to a decrease in water content and causing the leaves to turn yellow 
and dry.  This, in turn, leads to a decrease in chlorophyll content 
and the leaf area index.  These changes affect the total amount of 
reflected or emitted radiation from tobacco leaves, providing the 
possibility for remote sensing technology to rapidly and 
extensively monitor the occurrence and development of bacterial 
wilt in tobacco.  In the early stages of tobacco bacterial wilt 
disease, the leaves retain their green color, and the difference in 
color compared to healthy leaves is minimal.  Therefore, the 
disease can only be discerned through the observation of leaf 
morphology, where infected leaves may exhibit slight wilting. 

In recent years, crop phenotyping technologies have emerged 
as a crucial solution in agricultural research and crop breeding6.  
With the development of computer vision and artificial intelligence 
technology, crop disease diagnosis methods based on visible and 
near-infrared spectroscopy technology have gained widespread 
acceptance[7-9].  Zhang et al. summarized the application of 
hyperspectral methods in disease detection and commonly used 
data acquisition platforms[10].  Gu et al. achieved success in the 
early detection of tomato spotted wilt virus infection in tobacco 
using the hyperspectral imaging technique and machine learning 
algorithms[11].  Yusuf et al.  showed that the wavelengths of 730 
and 790 nm were most useful for distinguishing tobacco black 
shank[12].  Scholars also carried out early detection of tobacco 
diseases[13].  For instance, Zhu investigated the feasibility and 
potentiality of presymptomatic detection of tobacco disease using 
hyperspectral imaging, combined with the variable selection 
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method and machine-learning classifiers[14].   
While near-infrared spectroscopy and hyperspectral imaging 

contains more information than visible light images, visible light 
images can be easily obtained through various ordinary electronic 
devices such as digital cameras and smartphones, making them 
more feasible for disease image recognition in the visible light 
range.  With the improvement of computer image computing 
power, deep learning methods show great potential in target 
detection tasks.  More and more scholars have also applied this 
technology to plant disease detection[15-18].  Kumar developed a 
deep learning model that can use convolutional neural networks to 
classify and detect diseases in tobacco plants[19].  Compared with 
traditional algorithms, deep learning algorithms perform better in 
accuracy.  Sujatha compared the effect of traditional machine 
learning and deep learning, the disease classification accuracy (CA) 
is quite impressive as DL methods perform better than that of ML 
methods[19].  And the model has strong adaptability and achieved 
good results in detection of various plant diseases[8,20,21].  
Complex scenes in the field have always been the difficulty in plant 
disease detection.  To address the robustness and accuracy issues 
caused by complex image backgrounds, Zeng proposed a 
self-attention convolutional neural network (SACNN) to identify 
crop diseases by extracting the most effective features of crop 
diseases[22].  In the detection of crop bacterial wilt, many scholars 
have successfully carried out early detection, with high accuracy 
and simple way to obtain images[23].   

This study focuses on dynamic detection of tobacco bacterial 
wilt disease at a daily scale using hyperspectral and visible light 
techniques.  The dataset underwent rigorous processing and 
analysis to establish high-performance models, resulting in a 
systematic and rapid non-destructive phenotypic detection 
approach for tobacco bacterial wilt disease.  Furthermore, a 
comprehensive comparison and analysis of the two methods were 
conducted, aiming to achieve enhanced accuracy, simplicity, and 
cost-effectiveness.  The findings provide valuable insights into the 
characteristic bands of the disease and demonstrate the potential of 
object detection technology as a low-cost solution for early 
detection, which provides ample time for implementing common 
practices like early harvesting to minimize losses and isolating 
infected plants to prevent further spread. 

2  Materials and methods 

2.1  Experimental material and Phenotyping equipment 
The experiment utilized Yunyan 87 variety, which was bred in 

the plant pathology laboratory of Huazhong Agricultural University 
in April 2022.  Yunyan 87 is a flue-cured tobacco variety widely 
planted in China (more than 80% of the area), which was approved 
by the National Variety Approval Committee in December 2000.  
Yunyan 87 is a hybrid of Yunyan 2 as the female parent and K326 
as the male parent.  It is a stable variety with a smaller coefficient 
of variation than K326 and exhibits resistance to black shank and 
leaf spot, and moderately resistant to southern root knot nematode 
and tobacco bacterial wilt.  The experimental materials mainly 
consisted of seedlings in the early growth stage and were planted 
on the high-throughput crop phenotype platform of Huazhong 
Agricultural University in May 2022.  The plants were cultivated 
in an artificial climate box to ensure normal growth and then 
divided into susceptible plants and control plants (healthy plants) 
for further analysis, as shown in Figure 1.  Our materials are 
provided by Hubei Academy of Tobacco Science, and permitted to 
use in this study, with which all experiments in accordance with the 

relevant provisions of China. 

 
Figure 1  The changes of tobacco plants over time in the whole 

course of disease 
 

To make the experimental data more uniform, we chose the 
plants with relatively consistent growth in the seedling pot, three 
batches of experiments were carried out.  The first batch of 
materials was 28 plants, 8 plants were healthy plants and 20 plants 
were susceptible plants.  The second batch of materials was 13 
strains, 4 strains were healthy materials, 9 strains were susceptible 
materials, the third batch was 35 strains, 6 strains were healthy 
materials, and 29 strains were susceptible materials. 

In this experiment, the intelligent crop information acquisition 
platform of Huazhong Agricultural University is used for data 
acquisition, which can realize the automatic and non-destructive 
acquisition of the trait parameters of greenhouse seedbed crops.  
The system is mainly composed of three-coordinate motion unit, 
image acquisition unit and control unit, as shown in Figure 2.  The 
main structure of the platform is made of aluminum alloy, which is 
installed on the seedbed with a size of 7000 × 2000 × 1950 mm.  
The system uses a three-axis motion unit, driven by a stepper motor 
and an accurate motion control card (ECI2000, China Zmotion).  
The motion distance of each axis is 6100 mm for the X axis,    
950 mm for the Y axis, and 500 mm for the Z axis.  The image 
acquisition unit adopts an RGB camera (MARS-1230-23U3C, 
China Daheng) which is installed on the Y axis of the platform.  
The resolution of the camera is 4096 × 3000 pixels with a field of 
view of 530 mm × 388 mm on the canopy of the plant.  The 
spectral range of the hyperspectral camera (FX10e, Finland) is 
400~1000 nm.  For the full width at half maximum is 5.5 nm, 
there are 224 spectral bands’ data for all the samples[24].   

 
Figure 2  Intelligent crop phenotyping platform 

 

2.2  Experimental processes 
After the “four leaves and one heart” stage, tobacco plants 

were transplanted from the cultivation basin to small square basins 
measuring 5 cm × 5 cm × 7 cm.  The medium used was a mixture 
of nutrient soil and vermiculite in a 3:1 ratio, appropriate water was 
supplemented to maintain humidity, and trace element reagents 
were added to ensure the normal growth of the plant.  The plants 
were then cultivated in the greenhouse of the plant pathology 
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laboratory of Huazhong Agricultural University, with a temperature 
of 28°C and a daily illumination time of 16 hours.  After reaching 
a height of approximately 10 cm, the plants were artificially 
inoculated with Ralstonia solanacearum using the pricking method, 
with a pathogen concentration of OD600=0.4.  OD600 is an 
abbreviation for Optical Density at a wavelength of 600 nm.  It is 
commonly used in spectrophotometry to estimate the concentration 
of bacteria or other cells in a liquid.  By monitoring the rate of 
increase in OD600, the lag, log, and stationary phases of a bacterial 
culture can be identified.  1OD=log10(1/trans)[25].  After 
inoculation, the plants were transferred to the indoor phenotyping 
platform for data collection. 

As can be seen from Figure 1, tobacco leaves show visible 
symptoms starting from the third day after inoculation with 
bacterial wilt.  Therefore, we hope to conduct disease detection in 
the early stage of infection, which is within three days after 
infection.  In this experiment, the plants were observed with 
24-hour intervals.  To ensure high-quality data acquisition, image 
captures were performed in the morning when the plants were in 
their normal state.  The duration of visible light image acquisition 
last for 2-3 hours each time.  Therefore, we conduct visible light 
data collection between 8-11 am each day.  The hyperspectral 
image is collected at night.  We use a halogen lamp as a fixed 
light source.  Whiteboard correction and blackboard correction are 
performed before each shooting.  Figure 3 shows the scenes of 
tobacco plants cultivation and data acquisition.  Leaves that 
exhibit symptoms in the later stages of infection are marked as 
infected leaves during continuous observation, regardless of 
whether they exhibit symptoms in the early stages. 

The dataset comprises infected and healthy plant images with 
dimensions of 3000×2000 pixels, each image in the dataset 
contains multiple tobacco plants, with each plant having multiple 
leaves.  In total, there are 735 infected leaf samples as well as 459 
healthy leaf samples available for analysis.    

 
a. Plant transplanting scene b. Greenhouse cultivation scene 

 
c. Scene after inoculation (the shooting 

time is the third day of inoculation) 
d. Experimental data acquisition scene

 

Figure 3  The whole process of experimental material growth and 
data acquisition 

 

2.3  Data processing 
Students with knowledge of tobacco bacterial wilt are 

responsible for judging and dividing the plants after inoculation.  
Label the data set according to the results of their division.  Data 
was collected and classified into hyperspectral data and visible 
light data (RGB image), which have different formats.  As a result, 

two separate processing methods were employed, taking into 
account the unique characteristics of each data set.  A range of 
methods were carefully selected and modeled, and a unified 
evaluation method was utilized to assess their effectiveness.  The 
data processing flow chart for this study is presented in Figure 4. 

 
Figure 4  Processes of data processing 

 

2.3.1  Hyperspectral data processing 
1) ROI extraction 
Based on the hyperspectral data collected, this study focuses 

on the segmentation method of individual tobacco plants using 
LabVIEW software, aimed at accurately extracting the single plant 
tobacco area.  The data is then combined with this method to 
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extract the total reflectance and average reflectance of tobacco ROI 
(region of interest) area.  The first step involves reading the 
captured data and extracting the original images of all 224 bands.  
In the second step, two bands (No.29 and No.156) with clear 
background and ROI region information are selected for threshold 
segmentation, followed by denoising operation using the small 
region removal module to obtain a binary image.  Finally, the 
obtained binary image is mapped onto the original image as a mask 
to obtain ROI region in the hyperspectral data (Figure 5).  The 
data of each leaf was then segmented manually. 

 
Figure 5  ROI extraction process 

 

2) Data pre-processing 
In the preceding steps, only the total reflectance data of each 

band in each leaf region was extracted.  As environmental factors 
during plant growth are variable and individual differences among 
plants, the average reflectance can better demonstrate the 
difference between susceptible and healthy plants.  So, we 
calculated the average reflectivity based on area information and 
visualized the hyperspectral average reflectance curve of tobacco 
plants.  Each curve represented the spectral data of all bands of a 
single plant (Figure 6a).   

Prior to constructing the model, preprocessing can make the 
data set features more apparent, facilitating easier learning by the 
classifier.  Building on the average reflectivity data, we further 
processed the data, including first-order derivative, second-order 
derivative, and Log function, before combining it with the classical 
machine learning model.  To identify the most interpretable 
method and prepare for subsequent feature band identification, we 
conducted pre-experiments on the dataset using three methods: 
random forest (RF), logistic regression (logistics), and support 
vector machine (SVM).  The divided hyperspectral dataset for 
tobacco bacterial wilt was used for testing.   

The preprocessed spectral data set is subjected to classification 
based on labels, resulting in two sets of data representing the 
average spectral data of infected and healthy plants.  Visualization 
of the data in Figure 6b illustrates a discernible difference between 
the two sets, although some bands overlap.  To model this 
distinction, three high-performance classifiers - XGBoost, 
LightGBM, and SVM - are combined with the preprocessed data, 
and their classification effects are compared.  The classifier with 
high precision and recall rate is then selected to establish the 
optimal model. 

3) Feature bands selection  
Due to the high information content and dimensionality of 

hyperspectral data, appropriate methods for dimensionality 
reduction and feature band selection are necessary.  We use 
random forest, logistic regression, stepwise regression and lasso 

regression to reduce the dimensionality of the data and then use it 
with the SVM classifier to evaluate the classification results.  The 
results of the study, as depicted in Figure 7, demonstrated that the 
random forest algorithm exhibited superior performance.   

 
a. Original spectrum (using the third experimental data display), and figure 

 
b. Average curve of the first derivative of the average reflectance of  

healthy plants and infected plants 
Figure 6  Spectral data visualization 

 
Figure 7  Feature screening accuracy 

 

Nevertheless, this algorithm suffers from overfitting and poor 
robustness.  To address these concerns, the Extreme Gradient 
Boosting (XGBoost) ensemble learning algorithm was introduced, 
which utilizes gradient boosting tree algorithms to determine 
feature importance[26].  The algorithm computes feature 
importance based on the number of splits or split gains for each 
feature in all trees.  These values are then utilized to estimate the 
relevance of each feature to the classifier and, consequently, for 
feature selection purposes. 

XGBoost is a machine learning algorithm based on gradient 
boosting decision tree, which is widely used in classification and 
regression tasks.  The main advantages of XGBoost including:  
(1) Strong scalability, able to handle large-scale data.  (2) Robust, 
can automatically handle missing values and outliers.  (3) High 
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accuracy can optimize the objective function and regularization 
term to improve the model fitting degree.  (4) Good interpretability 
and can give the order of feature importance.  The objective 
function of XGBoost consists of two parts, the loss function and 
the regularization term.  The loss function measures the degree of 
model fitting, and the regularization term prevents overfitting of the 
model.  The loss function uses the weighted version of gradient 
boosting decision tree algorithm, and the regularization term is a 
linear combination of L1 and L2 regularization terms. 

Equation (1) presents the objective function of XGBoost: 

       (1) 
where,  is the loss function; yi is the true value 

of sample i;  is the predicted value of the model after t–1 
iterations; ft(xi) is the splitting node in iteration t, and Ω(ft) is the 
regularization term. 

After sorting the eigenvalues, the partition points are traversed, 
and the optimal splitting income is taken as the splitting income of 
the feature.  The feature with the optimal splitting income is 
selected as the division feature of the current node, and the binary 
division is performed according to its optimal division point to 
obtain the left and right subtrees.  The formula for calculating the 
split score is shown in Equation (2): 
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    (2) 

where, GL and GR are the gradient sums of the left and right child 
nodes; HL and HR are the Hessian matrix sums of the left and right 
child nodes, and λ and γ are the regularization parameters. 

The algorithmic principles of XGBoost are: (1) Model 
Initialization and parameters set.  (2) Compute the model's loss 
function, i.e., objective function.  (3) Optimize the objective 
function to obtain the best splitting node.  (4) Generate new tree 
nodes based on the splitting node and update the model.  (5) 
Repeat steps 2-4 until the stopping criteria are met.  Shortcomings 
of XGBoost are that it requires tuning a large number of parameters, 
such as tree depth and regularization terms.  Therefore, we use 
grid search to dynamically tune parameters and select the optimal 
parameters before building the model.  The tobacco bacterial wilt 
disease dataset is divided into a test set and a training set in a 3:7 
ratio, and multiple machine learning models are trained and 
evaluated on the dataset. 
2.3.2  Improved target detection algorithm based on RepVGG  

Convoluted neural networks (CNNs) are a type of neural 
network that mimics the human brain and can recognize visual 
patterns in raw images for object detection tasks.  In this study, 
YOLOX[27] and YOLOv6[28] models from Meituan’s Vision 
Intelligence Department were utilized as the basis for detecting 
tobacco bacterial wilt, with model improvements made to improve 
early detection.   

(1) Model construction strategy 
The YOLO model is typically composed of three components, 

namely the ‘backbone’ ‘neck’ and ‘head’[29].  In this study, we 
aimed to optimize the original YOLOX model by drawing insights 
from the YOLOv6 model with strong learning performance, as well 
as the widely-used YOLOv5 model[30].  Since the target model 
demands higher accuracy and precision in plant disease detection, 
we focused on directions that could enhance the model’s detection 
accuracy and precision.  This involved the selection of training 
and model construction strategies that could improve the model’s 
accuracy[31]. 

By analyzing the YOLOX and YOLOv6 algorithms in 
conjunction with current detection technology research, we 
improved the YOLOX model and created a new model named 
Tobacco-AT with insights drawn from the adaptive spatial feature 
fusion (Adaptively Spatial Feature Fusion, ASFF) method.  The 
mainly improvements to the model include: 

1) We used an EfficientRep backbone network based on the 
RepVGG style, which is highly efficient and can be reparametrized, 
leading to improved model representation ability and reduced 
inference latency.  To further enhance the model’s performance, 
we replaced the original CSPDarkNet-53 backbone with  
EfficientRep.  As depicted in Figure 8. 

2) ASFF is added to the ‘neck’ part of the network, which 
enables the network to learn how to spatially filter features at other 
levels, retaining only useful information for combination (Figure 9).  
The key idea of ASFF is to adaptively learn the fusion space weight 
of each scale feature map, which involves two steps: identical 
scaling and adaptive fusion.  Firstly, for a given level of features, 
other levels of features are adjusted to the same resolution and 
simply integrated.  Then, the best fusion method is learned during 
training.  The vector at the spatial position (yl

ij) after fusion is the 
weighted fusion of the vectors at the first three feature maps 

1 2 3( ,  ,  )l l l
ij ij ij
→ → →x x x .  1l l l

ij ij ijα β γ+ + = .  The weight coefficients 
l
ijα , l

ijβ , l
ijγ  in the formula are learned adaptively by the 

network, and they are shared among all channels.  A 1×1 
convolution is used to compute the coefficients in SoftMax so these 
features can be optimized with standard BP algorithm (Equation 
(3)). 
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λ
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          (3) 

The coefficients, also known as spatial importance weights, are 
adaptively learned by the network and shared among all channels.  
Different levels of features are adaptively fused together at each 
spatial location.  By leveraging the information interaction 
between different PAN (Path Aggregation Network) feature 
maps[32], the attention mechanism is used to complete the 
information fusion and enhancement of the ‘neck’ part.  A simple 
feature fusion process is illustrated in Figure 9. 

3) In addition to the ASFF module in the ‘neck’ part, we also 
incorporated the attention mechanism into the Task-aligned 
predictor of the TOOD (Task-aligned One-stage Object Detection) 
algorithm to enhance classification and regression features 
separately[33].  First, the features are compressed by the stem layer 
(1×1) of the decoupled head, and then the intermediate feature 
layer is obtained by stacking convolutional layers.  Next, the 
attention mechanism is used to enhance the features of the 
classification and regression branches separately, effectively 
decoupling the two tasks.  This process is illustrated in Figure 10. 

(2) Model training strategy 
Due to the limited sample materials, we employed multiple 

data augmentation strategies and optimized the training approach.  
Mosaic and MixUp data augmentation techniques were used, 
although they were turned off in the final 15 epochs to prevent 
overfitting.  We adopted the anchor-free concept, as the 
anchor-free paradigm has strong generalization ability and simpler 
decoding logic, which has been widely applied in recent years.  
And we implemented the SimOTA (Optimal Transport Assignment 
for Object Detection) label assignment strategy to accelerate the 
training speed and further improve the detection accuracy[34].  We 
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also employed the Varifocal Loss function in this study, which is a 
loss function designed for object detection problems.  This 
function reduces false positive rates while improving object 
detection accuracy.  The method assigns weights to 
difficult-to-distinguish positive and negative samples, reduces the 
influence of the difficulty between categories, and enhances the 
model's detection ability.  The formula for Varifocal Loss 
function is as follows (Equation (4)): 

( log( ) (1 )log(1 )) 0( , )
log(1 ) 0

q q p q p qVFL p q
p p qγα

− + − − >⎧= ⎨ − − =⎩
    (4) 

where, p is the predicted IACS (IoU-aware classification score, IoU 
means Intersection over Union); q is the target score.  For a 
foreground point, the q value of the ground-truth category is set to 
the IOU (gt_IOU) between the predicted bounding box and the 
ground-truth.  Otherwise, it is 0.  For a background point, q is 0 
for all target categories. 

 
Note: (a) is the backbone network of the network structure, (b) is the overall network structure, (c) and (d) are the RepVGGBlock structure diagrams. 

Figure 8  Network structure diagram 
 

 
Note: Each layer of the ‘feature pyramid’ is adjusted to the same scale, and spatial fusion is performed according to the weight. 

Figure 9  ASFF information fusion 
 

 
Figure 10  Attention mechanism 

 

2.3.3  Evaluating indicator 
Accuracy is a commonly used evaluation index that is defined  

as the number of correct predictions divided by the total number of 
samples (Equation (5)).  The higher the accuracy, the better the 



December, 2023              Zeng X F, et al.  Multi-sensor-based method for early detection of bacterial wilt of tobacco               Vol. 6 No. 1   39 

classifier performs.  Precision is defined as the proportion of 
positive examples that are correctly identified by the classifier 
(Equation (6)). 

TP TNACC
TP TN FP FN

+
=

+ + +
             (5) 

TPP
TP FP

=
+

                   (6) 

True Positive (TP): The number of positive samples that are 
correctly predicted as positive by the classifier.  True Negative 
(TN): The number of negative samples that are correctly predicted 
as negative by the classifier.  False Positive (FP): The number of 
negative samples that are incorrectly predicted as positive by the 
classifier.  False Negative (FN): The number of positive samples 
that are incorrectly predicted as negative by the classifier.   

We introduced the commonly used evaluation criterion mAP 
(mean Average Precision).  The AP (Average Precision) value is 
the area under the PR (Precision-Recall Curve) curve enclosed by 
the coordinate axis.  P is Precision and R is Recall (Equation (7)).  
In object detection tasks, the definitions of TP and FP are different.  
Simply put, the object detector predicts multiple boxes.  The 
number of successful matches with ground truth is TP, and the rest 
are FP. 

TPRecall
TP FN

=
+

                 (7) 

These modules, comprising the mAP (mean Average Precision) 
and its variants, play a pivotal role in objectively evaluating the 
efficacy of object detection models, facilitating the assessment of 
their ability to accurately detect and localize objects under different 
evaluation criteria. 

1) mAP@[.5:.95] (mean Average Precision over IoU range 
[.5:.95]): In contrast to mAP@0.75, this metric offers a 
comprehensive evaluation by considering a range of IoU thresholds 
from 0.5 to 0.95, with a defined interval.  This range encompasses 
various levels of bounding box overlap, allowing a more nuanced 
assessment of a model's performance across diverse object sizes 
and shapes. 

2) mAP@0.75 (mean Average Precision at IoU (Intersection 
over Union) 0.75): This specific variant of mAP focuses on 
assessing a model's ability to precisely localize objects within 
images.  It evaluates the average precision at a predefined 
intersection over union (IoU) threshold of 0.75.  A higher IoU 
threshold emphasizes stricter overlap criteria for bounding boxes, 
which is particularly relevant when precise localization is of 

paramount importance. 

3  Results and analysis 

3.1  Hyperspectral data modeling and evaluation  
For ease of processing, we numbered the 224 bands of 

hyperspectral data from 1 to 224, as detailed in Appendix 1.  We 
used the partitioned tobacco bacterial wilt hyperspectral dataset for 
testing and evaluation.  The dataset is at the leaf scale and covers 
the entire disease process of the second batch of materials.  It 
contains a total of 275 data points, with 75 data points in the test set.  
We used three preprocessing methods: first-order derivative (da), 
second-order derivative (dda), and Log function (log), and 
combined them with random forest (RF), logistic regression 
(logistics), and support vector machine (SVM) for 
pre-experimentation on the dataset.  As shown in Figure 15, the 
classification performance of the first-order derivative (da) 
combined with these four classifiers is the best.  Therefore, the 
first-order derivative (da) is the optimal preprocessing method.  
The visualization results are shown in Figure 11. 

 
Figure 11  Hyperspectral data preprocessing results 

 

We used the partitioned tobacco bacterial wilt hyperspectral 
preprocessed dataset for testing.  The test set contains 75 data 
points.  We used XGBoost, LightGBM, and SVM classification 
algorithms to model and output results, and plotted the results.  As 
shown in Figure 12. 

 
Figure 12  Classifier performance comparison 

 

The classification accuracy and precision of the three 
classifiers is shown in Table 1.  �Based on the requirements of the 

disease detection task, we chose the XGBoost model with the 
highest Precision and then built the model. 
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Table 1  Classification model evaluation results 

Classifier Precision Accuracy 

SVM 89.47% 89.33% 
XGBoost 92.98% 94.67% 

LightGBM 94.44% 93.33% 
 

For testing, we used the labeled average reflectance dataset for 
model training and verification.  We used a feature selection 
algorithm to obtain the characteristic bands of tobacco bacterial 
wilt susceptible leaves.  The contribution rate of each band to the 
discriminant results is shown in Figure 13.  Three bands with the 
largest contribution rate, 566.741 nm, 706.026 nm, 815.849 nm, 
were selected. 

 
Figure 13  Classifier performance comparison results 

 

We divide new data according to the characteristic bands of 
566.741 nm, 706.026 nm, 815.849 nm and combine support vector 
machine (SVM), Extreme Gradient Boosting (XGBoost), Logistic 
Regression (Logistic) and stepwise regression (RS) to build the 
model.  The accuracy of the model using all features is 
represented as ‘dAall’, while the accuracy of the model using 
feature bands is represented as ‘dAx’.  The results are shown in 
Table 2, and the XGBoost model achieved the best accuracy of 
92.20%. 

 

Table 2  Characteristic band model validation results table 

Model dAall dAx 

SVM 93.00% 88.00% 

XGBoost 99.04% 92.20% 

Logistic 95.12% 83.27% 

SR 95.00% 81.00% 
 

3.2  Evaluation of proposed Tobacco-AT model 
The dataset used in this study was prepared by organizing and 

preprocessing daily visible light images.  For annotation, the 
COCO dataset format was employed, with each type of annotation 
corresponding to a JSON file containing comprehensive 
information about the images, categories, and specific annotations.  
The created dataset was randomly divided into training set, 
validation set and test set with a ratio of 6:2:2.  Additionally, a 
periodic evaluation testing set was created based on the time 
interval after inoculation.  MMYOLO, an open-source toolbox 
based on the YOLO series algorithm and PyTorch/MMDetection, 
was used for this experiment.  MMYOLO is part of the 
OpenMMLab project (https://github.com/open-mmlab/mmyolo).  
Before training, we configured the basic training parameters.  The 
input image size was set to 640×640, the number of epoch was 100, 
and the batch size was set to 8.  We recorded every two epochs 
from 20-90 and all the last ten epochs.  The model saved the 

optimal weight file.  Training was performed using an NVIDIA 
Tesla M40 graphics card.  We selected the widely used YOLOv5 
and the recently released YOLOv6 and YOLOv8 as comparison 
models. 

 
Figure 14  Model evaluation results 

 

The evaluation index used in the COCO dataset includes the 
IOU threshold, with AP50 representing the AP at an IOU threshold 
greater than 0.5 and AP75 representing the same at an IOU 
threshold greater than 0.75.  The Tobacco-AT model, which uses 
the EfficientRep backbone and Varifocal Loss function, achieved 
faster convergence and a map_50 evaluation standard of 95.30% at 
the 22nd epoch.  As shown in Figure 14.  Furthermore, the 
map_50 values of the final ten epochs reached 99.00%, and the 
Tobacco-AT model outperformed other models in the map_75 
standard, achieving 96.70%.  As shown in Table 3. 

 

Table 3  Summary of optimal model results 

Model mAP@ [.5:.95] mAP@0.75 

YOLOv5 83.80% 30.20% 
YOLOv8 90.30% 64.20% 
YOLOv6 95.10% 66.70% 

Tobacco-AT 98.90% 67.20% 
 

To compare the performance of the YOLOv6 and Tobacco-AT 
models on the test set, their prediction results were compared.  
Both models exhibited good overall prediction performance, but 
the Tobacco-AT model with ASFF information fusion performed 
better in detecting diseased leaves, especially for small and edge 
leaves (Figure 15a).  The occlusion of objects has always been a 
challenging problem in target detection.  In the case of mutual 
occlusion of leaves, the Tobacco-AT model can accurately identify 
two diseased leaves (Figure 15b).  This is because the model can 
leverage the ASFF information fusion mechanism to integrate 
multi-level features, which helps to capture more contextual 
information and improve the model's ability to recognize partially 
occluded objects.  Additionally, the Varifocal Loss function used 
in the Tobacco-AT model can assign different weights to different 
parts of the object, which helps the model to focus more on the 
visible parts of the occluded object and reduce the interference 
caused by the occlusion. 
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a. Show the detection of occluded leaves 

 
b. Shows the detection of small objects at the edge 

Figure 15  Comparison of model prediction results for more 
difficult tasks 

 

3.3  Comparison of hyperspectral and visible light model 
effects 

Because tobacco plants are susceptible to tobacco bacterial wilt 
throughout their growth period, and the disease progresses from the 
roots upward, with varying durations of disease onset, the accuracy 
of early detection and continuous detection throughout the disease 
cycle are particularly important for the model evaluation. 

We created a new test set based on the number of days after 
inoculation and evaluated the two models accordingly.  We 
compared the improved visible light model (Tobacco-AT) with the 
high-spectral feature band model (XGBoost-Hypespectral) and 
found that in the early stages of bacterial wilt infection (days 1-2 
after onset), which is difficult to observe by the naked eye, the 
high-spectral model significantly outperformed the visible light 
model.  The high-spectral model achieved an accuracy of 69.57% 
on the first day of detection, while the improved Tobacco-AT 
model had an accuracy of 54.66%.  In the middle and late stage of 
the onset of bacterial wilt, that is, when the symptoms are more 
obvious (after the third day), the accuracy of the visible light model 
gradually surpassed that of the hyperspectral model, and the two 
models had the same effect in the later stage (Figure 16).  Table 4 
shows the accuracy of hyperspectral and visible light model for 
bacterial wilt detecting day by day. 

 

Table 4  Comparison of hyperspectral and visible light results 
day by day 

Days Hyperspectral Visible light 

1 69.57% 54.66% 
2 70.83% 66.00% 
3 86.36% 85.00% 
4 94.66% 93.33% 
5 100% 100% 
6 100% 100% 
7 100% 100% 

 
Note: The above figures show the changes in tobacco plants infected with 
bacterial wilt disease over a week, while the figures below compare the accuracy 
of the two detection methods throughout the entire disease cycle. 

Figure 16  Comprehensive comparison of disease cycle 

4  Discussion 

The primary focus of this study was to investigate early 
detection methods for tobacco bacterial wilt disease in indoor 
tobacco plants.  Phenotyping methods were employed to establish 
an early detection model for the disease and identify the 
hyperspectral reflection bands that exhibit sensitivity to tobacco 
bacterial wilt.  Hyperspectral imaging technology, while capable 
of providing detailed information, poses challenges in terms of data 
processing and equipment cost.  To address these concerns, the 
feasibility of using a multispectral camera for data collection was 
considered to reduce costs and simplify the process.  However, 
this approach necessitates robustness in both the model and the 
selection of feature bands.  It is important to note that in this study, 
data collection was solely conducted using a hyperspectral camera 
without further expansion.  For example, Cen Yi et al. have 
developed a portable hyperspectral acquisition device for collecting 
tomato bacterial wilt leaf data.  This device can be applied under 
various conditions and is not restricted by natural light 
limitations[35].  Kamlesh Golhani, Siva K. Balasundram 
summarized the method of applying neural network to spectral data, 
but the amount of data and the robustness of the model still need to 
be enhanced, which is also very inspiring to our work[36]. 

Through the analysis of the data results of this experiment, we 
used a hyperspectral camera to collect data on the plants at the 
earliest stage of disease occurrence, and then used the model we 
established to identify the disease.  The accuracy achieved is 
higher than that of the visible light method.  The visible light 
model is difficult to capture changes in plants at the earliest stage 
but can keenly identify susceptible plants at a later stage.  At the 
same time, the processing flow and computational requirements of 
hyperspectral methods are far greater than those of visible light 
methods.  We will also continue to explore the advantages of the 
two methods to combine the advantages of the two sensors.  How 
to align the data and whether it can be aligned at the pixel level is 
still a challenge.  The role played by attention mechanisms has 
also led to our interest in multimodal data approaches. 

5  Conclusions 

This study introduces two non-destructive methods for early 
detection of tobacco bacterial wilt disease in indoor plants.  These 
approaches offer rapid and non-destructive detection, surpassing 
conventional techniques.  The XGBoost-Hyperspectral full-band 
model achieves an impressive accuracy of 99.04% on the 
comprehensive testing set, with 69.57% accuracy attained on the 
first day of the disease cycle.  Furthermore, the feature band 
model based on the XGBoost algorithm demonstrates high 
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detection accuracy of 92.20%, utilizing only a select few specific 
bands. 

For visible light detection, deep learning methods exhibit 
exceptional capability in capturing the "wilting" feature from 
visible light images, effectively overcoming the challenge faced by 
traditional algorithms in precisely identifying early disease 
symptoms.  The enhanced Tobacco-AT model showcases 
remarkable improvements, achieving an accuracy of 98.90% in the 
test dataset.  While early detection accuracy is comparatively 
lower, it reaches 85.00% on the third day, equivalent to the 
performance of the hyperspectral method.  These results 
emphasize the effectiveness and timeliness of both methods for 
early detection of tobacco bacterial wilt disease. 
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