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Abstract: The goal of gait recognition is to recognize human identity through walking patterns.  There are two main methods 
of gait recognition in the existing research.  The first method is based on appearance to extract gait features from binary 
contour images, and the second method is based on model to extract gait features from key joints.  However, the effect of 
appearance based methods will be affected by the changes of carrying objects and different clothing, while model-based 
methods will be affected by the effect of pose estimation in recognition, and include sparse gait features, which makes existing 
gait recognition performances highly depend on visual texture information (such as clothing, carrying and so on).  Combining 
the advantages of the above two methods, we can not only use continuous contour sequences, but also remove the influence of 
clothing and occlusion.  In this paper, we propose a gait feature extraction method based on 3D point cloud.  The proposed 
method first extracts 3D point cloud based on each person's walking video.  Two different methods are proposed to map the 
3D point cloud data to 2D black and white images.  Then the projected 2D images are combined with the original 2D gait 
samples to expand existing gait datasets.  We evaluate 3D point cloud based gait recognition methods on popular gait datasets.  
The experimental results demonstrate that our proposed method can achieve improvements compared to existing methods, and 
can achieve the state-of-the-art recognition performances under several experimental settings. 
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1  Introduction  

In the era of rapid technological advancement, the synergies 
between gait recognition technology and precision agriculture 
aviation have emerged as transformative forces in the agricultural 
domain.  Gait recognition, as a biometric identification technique 
analyzing individual walking patterns, has showcased versatile 
applications across various fields.  Simultaneously, precision 
agriculture aviation, leveraging aerial platforms and advanced 
sensors, facilitates real-time monitoring and data collection, 
providing intelligent support for agricultural decision-making. 

Gait recognition technology enables precise monitoring of 
personnel activities in agricultural fields.  Through the analysis of 
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gait patterns, it becomes possible to identify the location, 
movement paths, and work efficiency of field workers.  This 
capability empowers agricultural managers to optimize human 
resources, thereby improving the efficiency of field management.  
Within the realm of animal husbandry, gait recognition technology 
proves valuable for monitoring and tracking animal behavior.  By 
analyzing gait characteristics, it becomes feasible to identify the 
health status, activity patterns, and ecological behaviors of 
livestock.  Real-time data support from gait recognition 
contributes to informed decision-making in livestock management.  
The data output from gait recognition can be seamlessly integrated 
into precision agriculture aviation systems, offering comprehensive 
and accurate information for agricultural production.  Agricultural 
managers can leverage this information to formulate intelligent 
decisions, such as optimizing planting schemes, improving 
irrigation systems, and enhancing crop yields. 

By amalgamating gait recognition technology with precision 
agriculture aviation, the agricultural management landscape 
experiences notable advancements.  This integration not only 
elevates the level of intelligence in agricultural management but 
also reduces resource wastage and production costs.  The 
continuous innovation and application of gait recognition 
technology present myriad possibilities, propelling precision 
agriculture towards a more intelligent and efficient future.  The 
nuanced insights derived from gait recognition offer novel 
perspectives and solutions for sustainable development in the 
agricultural sector. 

The goal of gait recognition is to take videos of different 
people walking, and identify different people through different 
walking styles[1].  Compared with other recognition technologies, 
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gait does not require the active cooperation of people, and the 
recognition task is completed only by taking walking videos, which 
greatly reduces the difficulty of obtaining data, and the periodicity 
of gait has also been proved to be unique.  And powerful features, 
so gait recognition is widely used in various industries in society[2].  
However, the task of gait recognition is prone to various interfering 
factors, leading to unsatisfactory recognition results.  Factors such 
as changes in clothing or the presence of carried objects can 
obscure the complete gait sequence[3-4].  Therefore, the challenge 
of gait recognition is to still have a high recognition effect in the 
presence of negative effects such as realistic occlusion. 
 

 
Figure 1  The visual representations of different gait recognition 
methods.   From top to bottom represents the original videos, 
binary contour images, bone key point features[5] and 3D point 

cloud features.  From the visualizations, we can see that 3D point 
cloud is quite good at reducing influence of clothes and carryings 

 

In general, gait features can be mainly divided into two types: 
appearance-based gait features[6-7] and model-based gait features[8-9].  
Appearance-based features include more comprehensive features 
but are easily affected by disturbing factors[10].  In recent years, 
many existing gait recognition studies use the method of 
convolutional neural network to extract gait features, which have 
proved their great recognition ability and recognition effect[11].  
Shiraga et al.[12] used 2D neural networks to extract globally valid 
gait features by taking gait energy images as input.  Chao et al.[13] 
used 2D convolutional neural network extracts global effective 
features at each frame level, and extracts local effective gait 
features from local parts of the human body.  Zhang et al.[14] 
divided the human body into different human body parts and used 
more than one independent 2D neural networks to represent local 
effective characteristics.  Fan et al.[15] proposed a focal 
convolutional layer method to more effectively extract local gait 
features for recognition.  Global features are not effective enough 
for the details of human walking gait, while relative local features 
may pay less attention to the connection between local areas, or 
even lose context information.  Wolf et al.  [16] proposed a 3D 
neural network to extract gait features more effectively, but the 
traditional 3D neural network requires the length of the gait 
sequence to be a fixed value, in order to perform classification 
tasks, and cannot directly model gait features in various-length 
fragments of gait videos. 

However, both appearance-based gait recognition methods and 
model-based gait recognition methods have limitations to some 
extent, as shown in Figure 2.  Appearance-based gait features are 

easily affected by changes in perspective, clothing and carrying, 
while model-based gait features are too sparse to contain sufficient 
effective information. 

 
Figure 2  Illustration of Gait Recognition based on Cameras and 

3D Pose Estimation.  Gait recognition based on cameras typically 
utilizes silhouettes to learn shape information from a single 
viewpoint.  Gait recognition based on 3D pose estimation 
leverages three-dimensional structure, shape, and occlusion 

removal to identify individuals 
 

To address the above issues and combine the advantages of 
appearance-based and model-based methods, in this paper, we 
propose to reconstruct three-dimensional (3D) point cloud of 
human body from single gait images.  From the reconstructed 3D 
point cloud, we can directly extract robust gait features insensitive 
to texture variances[17-18].  By this way, the influence of dress and 
carryings will be reduced by a large extent and adequate gait 
features will be preserved.  Then we make full use of the 
advantages of appearance-based and model-based gait recognition 
methods. 

The 3D point cloud can segment the effective 3D shape 
information of the human body and the human body texture 
information.  The 3D human body shape information is capable of 
describing the essential human body structures and robust to dress 
or carrying variances.  Moreover, the 3D point cloud can describe 
much richer gait information than existing model-based methods 
using human key joints.  3D human body reconstruction is 
specifically a single-stage network that predicts multiple 3D 
characters in a detailed way down to the pixel level.  It can predict 
differentiable images from an image, so as to analyze the 3D mesh 
information of each person in a simple positive image. 

During the experiment, we found that a large number of 3D 
point cloud features will bring a large computational cost, we need 
to design a feature extraction method to extract effective gait 
features from 3D point cloud.  In this paper, we design a feature 
mapping network to map 3D point cloud to 2D gait features.  By 
adding 3D reconstruction loss to the mapping network, the 
mapping model can decouple 3D shape information from visual 
texture to 2D view plane, then the docking between 3D and 2D 
features is established.  The mapped 2D features can be used to 
complete identity recognition. 

Traditional binary gait contour images are very sensitive to the 
occlusion of clothing or carrying conditions, and it is difficult to 
completely extract the basic features of the human body.  
Although the method based on key joint points can eliminate the 
influence of backpack, the extracted joint point information is too 
limited to reflect complete gait information[19-20].  The 3D point 
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cloud method can not only eliminate the occlusion effect of 
clothing or carrying conditions, but also extract adequate gait 
features.  The huge number of accessible gait features in 3D point 
cloud are undoubtedly capable of improving gait recognition 
performances. 

The main contributions of the proposed methods are as 
follows: 

• We propose to extract gait features based on 3D point cloud 
method, which makes the huge point cloud features bring more 
possibilities for high-accuracy gait recognition study. 

• We propose a fast-running 2D and 3D double loss function, 
which realizes the adaptive 2D feature mapping from a large 
number of 3D point cloud data to 2D features, which reduces the 
large computational cost caused by huge data amount in 3D point 
cloud and effectively retains the main gait characteristics in 3D 
point cloud. 

• We propose a fusion method of 3D point cloud features and 
2D binary contour features, and the obtained fusion data can more 
effectively make up the limitations of appearance-based and 
model-based methods, which is superior to the existing gait 
recognition methods and presents satisfactory recognition 
performances. 

2  Related Works 

2.1  3D mesh regression 
3D point cloud reconstruction requires 3D pose estimation.  

Many research works have transformed the task of 3D human body 
recognition pose estimation and reconstruction into the task of 3D 
key points of the human body.  These studies are divided into two 
types, the first one is a single-stage method, which takes an image 
as input and estimates the 3D key joint points, these methods have 
impressive effect[21-22] .  The second one is a two-stage approach, 
which first estimates 2D qualifications and then estimates 3D 
skeleton information in the second stage[23-24] or regression 
methods[25-27].  The two-stage method requires a pose estimation 
network with a strong estimation effect, and on this basis, the 
generated heat map and an effective backbone network are used to 
comprehensively improve the performance of human recognition. 

In subsequent studies, with the development of parametric 
models, model-based 3D human body shape poses have gradually 
become more powerful.  Compared with modeless methods, 
parametric human body model can get the human body mesh.  
With the advancement and development of the field of deep 
learning, many studies have begun to focus on deep-learning-based 
methods to improve the performance of 3D human shape pose 
estimation[28-31].  In 3D pose estimation, the relative rotation 
position of the shape is difficult to be learned by the network, so 
many research methods replace this learned feature from the 
intermediate representation, such as key points and image semantic 
segmentation[32-34].  There are also some studies [35-36] using 
advanced deep networks to improve the regression network in the 
model. 

In 3D human body shape and pose estimation, the problem of 
relative rotation always exists.  At the same time, some researches 
are trying to improve the effect of this aspect.  For example, Zhou 
et al.[37] estimated the different angles of joint rotation in the human 
body, and Yoshiyasu et al.[38] estimated three-dimensional rotation 
matrix, Mehta et al.  [39] designed a relative rotation program to 
predict Euler angles to solve the rotation problem identified by 3D 
estimation. 

2.2  Silhouette-based Gait Recognition 
Existing popular appearance-based gait recognition methods 

take gait silhouettes as input and design deep networks [40-43] to 
extract features.  Local gait features of human body parts have 
been proved to have high discriminative capacity[44-45].   

In order to explore more discriminative features embedded in 
temporal information, some research works directly use the original 
silhouette sequences as input[46].  Wu et al.[41] designed a 3D 
convolutional network with multiple adjacent frames as input, and 
verified in experiments that considering time information can 
significantly improve performance.  Zhang et al.[47] proposed the 
operation of separating the gait features of primitive people from 
the original image.  Some works[48] created 3D tensors based on 
the spatio-temporal information available in the sequence, Chao et 
al.[13] proposed a method that treated gait as a series of silhouettes, 
instead of isolating gaits.  The author designed a series of 
well-oriented operations according to the cross-view conditions.  
However, the proposed silhouetted gait sequence is able to 
incorporate many features not found in previous studies[49], such as 
changes in walking state, but clothes and carrying objects still have 
a certain degree of negative effect on the performance of 
recognition.  Fan et al.[15] devised a method to exploit local part 
features. 
2.3  Skeleton-based Gait Recognition 

The model-based gait recognition method takes the skeleton 
key joint points as the input of the network, and the joint point data 
can be obtained through sensors[50-51] and human body pose 
estimation methods[52-54].  Early methods[55-56] face difficulties in 
robust and accurate fitting of human models, so the results are not 
very satisfactory.  On the other hand, recent studies[57-58] 
overcome these difficulties by using the most advanced human 
posture estimation methods (such as OpenPose[52] and Human 
Mesh Restoration (HMR) network[59]), Therefore, it can be found 
that key points of bones have greater advantages than contours.  
For example, Liao et al.[57] obtained key point data of human bones 
through OpenPose, a 2D human body pose estimation network, and 
then sent the key point data into the network for feature extraction.  
extraction and identification.  Liao et al.[8] conducted a deeper 
study by extending 2D joint points to 3D, and 3D information is 
more obvious to view changes.  Li et al.[58] used the HRM 
network to optimize the extraction and recognition network by 
using a parametric model. 

The bone key points can effectively eliminate the influence of 
the external contours, and are more effective for human gait 
information.  Compared with silhouettes, skeleton dynamics are 
inherently more robust to identity independent factors (such as 
wearing and carrying conditions), because skeleton patterns are 
only concentrated in the essential human body structures.  The 
skeleton information is represented by the position of different 
joints and the confidence score, which is used to display the 
detection quality of each point.  The most direct method to model 
these points in the depth neural network is generating the body 
joint heat maps.  Liao et al.[8] CNN is used to obtain 
spatiotemporal features using human 3D posture.  In addition, 
Since in recent deep learning researches, the application and effect 
of the graph convolutional neural networks are very good in 
various fields[60-61], some studies have begun to use the graph 
convolutional neural network to extract gait features from the key 
point information of the skeleton.  For example, Li et al.[62] first 
applied GCN to recognize gait, and achieved remarkable 
performance despite low dimensional features.  Teepe et al.[5] 
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further extract gait feature information effectively from key points 
of human skeleton based on residual network and graph 
convolutional neural network[63].  However, these methods are 
usually more sensitive to occlusion because they rely too much on 
accurate detection of body joints.  Although these works show 
encouraging improvements, according to human experience, the 
deep features learned in the neural network model are relevant 
features, but the basic features that are effective in dynamic mode 
may be lost in joint position operation.  Therefore, the ability of 
expression and generalization is limited. 

3  Method 

Through the estimation of 3D body pose and shape, the 3D 
point cloud features of the human body are obtained.  
Subsequently, these features are mapped to 2D images using a 
specially designed autoencoder.  To facilitate the training process, 
both 3D and 2D losses are incorporated as auxiliary losses to guide 
the network.  The resulting images are then combined with the 
existing binary gait silhouette images, thereby expanding the 
dataset of gait samples. 

3.1  Extracting 3D point cloud 
In this section, multiple 3D human pose shapes in an image are 

estimated by a single-level network in a predictive pixel-level 
manner in each frame.  In the network, multiple differentiable 
levels of images are predicted from the input image to resolve the 
3D pose shape mesh of each person.  Specifically, as shown in 
Figure 3, the 3D human pose shape estimation network predicts 
two types, the first is the body center heat map representing the 
position of the 2D human body center, and the second is 
representing Mesh parameter map of the 3D mesh parameters of 
the human body.  Through such two sampling processes, the 
center position obtained from the body center heatmap and the 3D 
person body mesh parameter map are combined to put the 
parameters into a parametric body model[64] to predict the 3D mesh 
parameters of multiple people.  Since the center position of each 
person is obtained, the body parameters of each person can be 
effectively extracted even in the case of mutual occlusion by 
multiple people.  Moreover, combining body center points and 
body meshes is robust to complex situations compared to 
traditional learning methods. 

 
Figure 3  One-stage fashion for Multiple 3D People (ROMP) first takes the resnet network as backbone.  Input an image containing a 

human body, the method uses three branch networks to predict three different maps, the first is the Body Center heatmap, which gets the 2D 
information of each person's body center position, and the second is the Camera map, which describes the relationship between displacement, 
body shape, distance and depth of a person, the third is a Skinned Multi-Person Linear map (SMPL), which describes the 3D pose and shape 
information of a human body, and the Skinned Multi-Person Linear map establishes pose and efficient mapping of shapes to human body 3D 
mesh information.  Mesh Parameter map combines Camera map and Skinned Multi-Person Linear map, including 3D grid information of 
human body and displacement distance information.  Finally, the final 3D mesh information of the human body is estimated by combining 

the body center heat map and the Mesh Parameter map 
 

Usage of 3D Point Cloud Data.  Even if there is no ground 
truth value, the parameterized body model SMPL obtained from the 
3D human body pose shape estimation network can efficiently 
model the 3D information of the person, and can effectively extract 
the gait feature information.  Different parameters in SMPL 
contain different information of the human body.  By visualizing 
each parameter, we can observe the following features: 

• cam (1, 3):  Denotes  the  camera  parameters  of  a  weak  
perspective camera, represented by 

3θ ∈ . 
• body_pose (1, 69): Represents the SMPL pose parameters,  

corresponding to 
69θ ∈ . 

• smpl_betas (1, 10): Signifies the SMPL shape parameters,  
represented by 

10θ ∈ . 
• joints (71, 3): Refers to the 3D pose results, represented by  

71 3θ ×∈ . 
• verts (6890, 3): Represents the 3D coordinates of the human  

body mesh in 3D, corresponding to 
6890 3θ ×∈ . 

• pj2d (71, 2): Denotes the 2D coordinates of the keypoints  
filled in the input image, represented by 

71 2θ ×∈ . 
• pj2d_org (71, 2):  Signifies  the  2D  coordinates  of  the  

keypoints in the original input image, corresponding to 
71 2θ ×∈ . 

• can_trans (1, 3): Represents the rough 3D translation 
obtained from the estimated camera parameters conversion, 
represented by 

3θ ∈ . 
• centers_conf (1, 1): Denotes the confidence value of 

detecting the person on the center image, corresponding to 
1θ ∈ . 

Visualizing each of these parameters provides valuable 
insights into the different aspects of the system, such as camera 
settings, pose estimation, shape representation, keypoint 
localization, and confidence evaluation.  These visualizations aid 
in understanding the underlying processes and can facilitate further 
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analysis and improvement of the overall system. 
Due to the limited dimensionality of bone points, it may not 

have sufficient capacity to represent the complete features of the 
human body.  As a solution, we utilize 6890 3θ ×∈  3D human 
body mesh, which represents the 3D point clouds for data 
processing.  The use of point cloud information provides a rich 
and extensive representation, which proves to be suitable for 
extracting gait recognition features.  The larger dimensionality of 
the point cloud data allows for more comprehensive and detailed 
feature extraction, enhancing the accuracy and effectiveness of gait 

recognition algorithms. 
The three-dimensional human body mesh information can be 

visualized using matplotlib.pyplot library, resulting in a scatter plot 
as shown in Figure 4.  To normalize the data and make it usable, 
Min-Max Scaling technique can be applied: 

min

max min

X XX
X X

−
=

−
 

where, X represent the coordinate value; Xmin represent the 
minimum value of the coordinate, and Xmax represent the maximum 
value of the coordinate. 

 
Figure 4  To visualize the three-dimensional human body mesh information using matplotlib.pyplot and subsequently normalize the data 

using Min-Max Scaling 
 

This scaling process ensures that the data is normalized within 
a specific range.  By performing Min-Max Scaling, the 
three-dimensional point cloud data can be effectively processed and 
utilized for further analysis or applications. 

In this study, we extracted three-dimensional point cloud 
information from video data collected from a cohort of 124 
individuals.  Each individual was recorded in three different states, 
capturing variations in gait patterns.  Additionally, the recording 
setup included 11 different camera angles, providing multiple 
perspectives for data collection. 

By analyzing the video data and applying appropriate 
computer vision techniques, we were able to extract and reconstruct 
three-dimensional point clouds representing the spatial coordinates 
of the human body in each frame.  This rich dataset allowed for a 
comprehensive analysis of gait patterns, considering variations 
across individuals, states, and camera angles. 
3.2  Map 3D point cloud to 2D gait features 

Since the reconstructed 3D point cloud contains a large amount 
of 3D points, bringing huge computational cost and redundant 
points, we need to map 3D point cloud to 2D feature spaces to 
reduce computational cost and preserve as many essential gait 
features as possible.   

The mapping method includes 2D mapping by coordinate 
simplification and autoencoder mapping.  We will introduce the 
two kinds of mapping methods in the following section. 

2D mapping by coordinate simplification.  The data 
representation of human body is 3D point cloud, which occupies a 
large amount of storage space and has a large computational cost, 
which is not convenient for data processing and calculation.  If the 
3D point cloud is projected to 2D form, it can save a lot of space 
storage and computing costs, and it is also very convenient for 
feature representation and matching.  In this paper, a 2D form of 
3D human point cloud is proposed.  As shown in Figure 5, 
Without losing information, a more simplified form is used to 
represent information, which makes it possible to store and 
recognize massive 3D human bodies. 

We propose a projection function T that maps the 3D 
coordinates of all subjects from 1 to n to 2D coordinates, resulting 

in a set of Nθ results.  The p represent the 3D coordinate. 
1

( , , ) ( , , )( ,..., )n
x y z x y zN T P Pθ =  

For a given set of 3D point cloud data, one coordinate 
dimension is systematically removed, leaving the remaining two 
dimensions.  Subsequently, the data is graphically represented, 
with a black background and white foreground, resulting in a 
binary image.  This process is iteratively repeated by successively 
eliminating the other two coordinate dimensions, thereby yielding 
three distinct data representations. 

In terms of methods, there have been studies using depth 
images to represent 3D human body structures.  However, this 
method can only store the spatial structural information of the 
human body, while it can not represent the texture information that 
contains rich identification features, which makes depth images 
difficult to further improve the recognition performance.  In fact, 
human information includes both structural features and texture 
features.  Both structural and texture information can describe 
human physiological features.  Comprehensive usage of these two 
features can better extract human identification information and 
improve the recognition performances.  From the perspective of 
information collection equipment, the current 3D human collection 
equipment can basically carry color texture and acquiring 3D 
human structure information.  Therefore, if the two modes of 
human 3D structure information and texture information can be 
used simultaneously, more complete human identification features 
can be extracted, and the overall performance of the human 
identification system can be improved through multi-modal 
identification fusion. 

Autoencoder mapping.  An autoencoder is an unsupervised 
learning neural network that encodes input data into a 
low-dimensional vector, and then decodes it into the original input 
through a decoder.  Autoencoders are used in many fields, 
including dimensionality reduction of features.  The traditional 
method of feature dimensionality reduction is principal component 
analysis (PCA), but the dimensionality reduction performance of 
autoencoders is better than PCA.  Since the neural network can 
extract robust features more effectively, the decoder can 
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reconstruct the encoded vector as input, which can better obtain the 
encoded features, and the encoder can also be used for 

classification tasks, so it shows that the encoder It can achieve the 
function of effective feature extraction. 

 
Figure 5  Mapping 3D point cloud to 2D binary images.  We first take out the coordinates of a dimension to get the 2D cutting plane 

formed by the other two dimensions, then get the binary images 

 
Figure 6  The 3D point cloud data is taken as input of the encoder E network in the data format of each 3D point.  After encoder E 

reducing the dimension from 3D to 2D, the decoder G decodes the 2D data to 3D, where the 3D reconstruction loss is used to force the 
decoded 3D data to fit the original 3D data.  Then we input the 3D point cloud data into the generated encoder E, and then use a 

discriminator D to determine whether the projected 2D data is consistent with the natural binary images, and then output the data that is 
judged to be true. 

 

The Autoencoder consists of two main parts: the encoder is 
used to encode the input, and the decoder uses the encoded features 
to reconstruct the input, which can be defined as φ  and ψ  

:
:

φ χ γ
ψ γ χ

→
→

 

,
, arg min || ( ) ||

φ ψ
φ ψ χ ψ φ χ= −  

Given a hidden layer, the input dx χ∈ =  is accepted from 

the encoding stage of the encoder and mapped to ph γ∈ = : 
h = σ(Wx + b) 

where, h represents the feature vector; σ is the activation function; 
W is the weight matrix, and b is the offset vector.  The weight and 

offset vectors are updated through backpropagation as the training 
progresses.  Mapping h from the decoding stage of the encoder to 
the reconstructed x′ (consistent with the shape of�x): 

 

x′ = σ′(W′h + b′) 
The σ′, W′, b′ of the decoder may be independent of the σ, W, b 

of the encoder. 
Autoencoder is to minimize square error reconstruction loss: 

 
The model is trained using a composite loss function that 
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incorporates both L2 loss and 3D discriminative loss, with 
weighted hyperparameters α and β respectively: 

 
Similar to the training mode of other neural networks, the 

training of Autoencoder also uses backpropagation to update 
parameters to converge the network.  When the dimension of the 
intermediate feature γ is smaller than that of the input data χ, the 
intermediate feature ( )xφ  can be regarded as the feature 
compression of the input data x, which is used for dimensionality 
reduction of the feature.  If the dimension of the intermediate 
feature is greater than or equal to the dimension of the input 
number, the autoencoder may learn the identity function or useless 
function representation, but studies have shown that the encoder 
can still learn useful feature information.  Therefore, the 
dimension and number of layers in the autoencoder structure can be 
reasonably designed according to the form of the task. 

The construction principle of a dual loss function typically 
involves the design of two main components, aiming to 
simultaneously optimize two distinct objectives during the training 
process.  This type of loss function design is commonly employed 
in deep learning tasks, where one loss function is utilized to 
optimize the primary task, while the other is often employed to 
optimize an auxiliary task or provide regularization. 

The primary task discriminative loss function is typically 
tailored to the model’s primary objective.  This loss function 
measures the model's performance on the primary task, guiding the 
updates of model parameters to enhance its capability in fulfilling 
the primary task.  The auxiliary task L2 loss function is employed 
to optimize an auxiliary objective related to the primary task.  
This objective may be slightly different from the primary task or 
serve as a regularization term to improve the model’s 
generalization performance. 

The overall construction of the dual loss function usually 
involves a weighted sum of the primary task loss function and the 
auxiliary task loss function.  This allows the model to 
simultaneously optimize both loss functions during training, 
enabling a more comprehensive learning of task-relevant features.  
This design is effective in multi-task learning scenarios or when 
leveraging auxiliary tasks to guide learning and improve overall 
model performance. 

In our proposed Autoencoder mapping of 3D point cloud data, 
we consider that the generated 3D data is huge, and we need to map 
the 3D point cloud of each image to 2D data, so our encoder network 
structure needs to be simple enough, so we design an effective fully 
connected neural network as the structure of the encoder and 
decoder.  The use of discrimination loss and L2 loss forces the self 
encoder structure to effectively extract two-dimensional features. 

The incorporation of both discriminative loss and L2 loss in 
the model aims to effectively extract 2D features within the 
autoencoder architecture.  The discriminative loss measures the 
discrepancy between the generated 3D outputs and the original 
input 3D data, compelling the network to focus on improving the 
3D modeling performance.  Meanwhile, the L2 loss evaluates the 
dissimilarity between the encoder-generated 2D data and the 
black-and-white contour images from CASIA-B dataset, promoting 
the convergence of the network towards desired 2D outcomes.  By 
employing these distinct loss functions, the autoencoder structure is 
able to extract 2D features more efficiently. 

The combined usage of discriminative loss and L2 loss 
facilitates the autoencoder structure in effectively capturing and 
reconstructing high-quality 2D features.  This comprehensive 
approach of incorporating multiple loss functions enhances the 
performance of the autoencoder and yields improved results in 2D 
modeling tasks. 

 
Figure 7  The process of mapping 3D point cloud data to 2D images can be visualized through a flowchart.  The upper branch represents 

the direct 2D mapping approach applied to process the 3D data, while the lower branch represents the autoencoder mapping approach.  
Eventually, the resulting data is combined with the CASIA-B dataset, creating a combined database that incorporates both 3D and 2D 

information 



December, 2023                    Yang Q G, et al.  Gait recognition based on 3D point cloud data augmentation                    Vol. 6 No. 1   75 

 

Mapping 3D point cloud to 2D gait images.  To arrange the 
3D point cloud data of different subjects under different walking 
conditions, we generate 3D point cloud from different perspectives 
of different states of each person, get 2D point data from 3D point 
cloud data through 2D mapping, normalize the 2D data, retain the 
morphological features of the human body, represent the 2D data in 
form of images, and convert the images to 64×64 binary contour 
images by clipping, then merge them with gait samples in the 
original dataset. 

By applying either the 2D mapping or the autoencoder 
mapping to process the binary black-and-white contour images, we 
can align the same states and angles of the participant with the 
corresponding states and angles in the CASIA-B dataset.  This 
integration involves combining the processed data from both 
approaches, ensuring that the same conditions and perspectives are 
accurately represented.  This combined dataset facilitates 
comparative analysis and evaluation between the participant’s data 
and the reference data from CASIA-B, enabling a comprehensive 
examination of similarities and differences in various states and 
angles. 
3.3  Gait recognition based on gait features obtained from 3D 
point cloud 

The 2D gait images obtained from 3D point cloud have several 
advantages: (1) the 3D point cloud are built based on essential 
human structures which are much less affected by dress and 
carrying, then the projected 2D gait images are more robust to dress 
and carrying variances; (2) the 3D point cloud can be projected to 
any view planes to obtain 2D gait images under arbitrary views, 
which is helpful in expanding adequate gait samples for training 
gait classification networks; (3) the 3D point cloud contains a large 
amount of dense features points describing more comprehensive 
human moving characteristics than sparse key joint points. 

After projecting 3D point cloud to 2D gait images, the 2D gait 
images are input into We adopt the method of treating gait as a 
sequence, which can effectively preserve the connection between 
human walking gaits.  We put the combined multiple frames 
which are processed from 3D point cloud data into the gait method.  
The image consists of a continuous sequence of 30 frames 
capturing the gait over time, which is not affected by the order of 

the input frames.  The gait sequence can be effectively integrated 
for videos taken under different conditions from different 
perspectives, clothing and carrying items.  It has a more precise 
and powerful effect in practical application scenarios. 

Apart from GaitSet method, there have also appeared other 
methods considering multiple gait frames as a set, like GaitPart and 
GaitGL.  In this paper, we will test the effectiveness of our gait 
samples projected from 3D point cloud on different set-based 
classification networks. 

GaitPart used the Focal Convolution Layer to extract enhanced 
gait features, and also uses multiple parallel Micro-motion Capture 
Module (MCM) to focus on the short-term feature learning of the 
gait, thereby improving the overall performance of gait recognition. 

GaitGL proposed to combine global and local gait information.  
This module is composed of multiple global and local modules to 
effectively extract feature information for gait recognition.  In 
addition, it also uses A Local Temporal Aggregation (LTA) that 
preserves spatial information by reducing temporal information to 
learn more spatially. 

4  Experiments 

In this section, We present the experimental comparison results 
between our method and GaitSet[13], GaitPart[15] and GaitGL[65].  
The two 2D feature extraction methods: direct two-dimensional 
mapping and self encoder mapping are compared.  To illustrate 
the effectiveness of each experimental setting option, we provide a 
series of detailed ablation studies and standard measurements. 
4.1  Datasets and Training Details 

CASIA-B.  The CASIA-B dataset[66] is the most widely used 
gait recognition dataset in current research.  This data set contains 
124 different people.  Each person has 3 walking states, which are 
normal, carrying a bag and wearing a coat.  Among them, there 
are 6 groups of videos in the normal state, 2 groups of videos in the 
carrying bag, and 2 groups of videos in the coat.  Each person has 
a total of 10 groups of videos, each group of videos contains an 
average of 11 camera angles from 0 to 180 degrees, and the interval 
sampling angle is 18 degrees, so the there are 13640 gait vidoes in 
the dataset.  The data set can be divided into different training sets 
and test sets correspond to different tasks. 

 

 
Figure 8  From the top left to the bottom right are clips from different angles of the subject’s video in the CASIA-B[66] gait dataset 
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As shown in Table 1, the first 74 people are selected as the 
training set to train the network model, and the remaining 50 
people are taken as the test set [41].  In the test, we set the gallery 
to NM\#01-04 and the probe to NM\#5-6, BG\#1-2, CL\#1-2 to test 
the experimental effects of three different states: normal (NM), 
carrying a bag (BG) and wearing a coat (CL). 

 

Table 1  Experimental settings of CASIA B dataset 

Test 
Training 

Gallery set Probe set 

ID: 001-074 ID: 075-124 ID: 075-124 
Seqs: NM01-NM06 Seqs: NM05-NM06 

BG01-BG02, CL01-CL02 
Seqs: NM01-NM04 

BG01-BG02, CL01-CL02
 

Training Details.  In all experiments, the input is a set of 
binary human silhouette images with image size 64×44.  This data 
is directly combined by the CASIA-B dataset and our proposed 3D 
point cloud dataset.  The optimizer is Adam, the learning rate is 
set as 1e-4, the weight decay is set as 5e-4.  The batch size is set 
as (8, 16).  Also, our trained model is 150K iterations.  In the 
training process, the gait sequence frame number of the input data 
is 30.  In the testing phase, the entire gait sequence frames of a 
person are input into the deep model.  The model is trained and 
tested using 4 NVIDIA 3080 GPUs. 
4.2  2D mapping VS Automatic encoder mapping 

The generated results of the two different mapping approaches 
for the 2D binary images are depicted in the accompanying Figure 
9.  It is evident that the 2D mapping technique successfully 
preserves the original view mapping effect, resulting in generated 
images that closely resemble the visual characteristics of the 
original data.  On the other hand, the autoencoder-based mapping 
method demonstrates the ability to capture the features of the 
underlying 3D information, effectively aggregating global features 
and exhibiting discernible distinctions in local features.  This 
signifies the proficiency of the autoencoder in learning multi-level 
representations of the input data.  The provided figure visually 
illustrates the disparities between the two mapping approaches and 
their corresponding effects. 
 

 
Figure 9  Visualization of different 2D mapping methods: The top 
row displays CASIA-B data, the middle row represents direct 2D 
mapping, and the bottom row represents autoencoder mapping.  
These columns correspond to different perspectives.  From the 

visualizations, it is evident that the autoencoder method excels in 
aggregating global features and extracting local features 

 

Both 2D mapping and automatic encoder mapping from 3D 
point cloud have advantages and limitations.   

First, we conduct 2D mapping experiments on GaitSet, 
GaitPart and GaitGL.  Compared with many features based on 

appearance and skeletal joint points, the 3D point cloud features 
extracted by the proposed method are large and effective, and the 
occlusion information for human effect is less.  Our method 
shows that the adequate gait features existing in 3D point cloud are 
capable of bringing improvement in different walking conditions.  
The proposed method uses the binary contour maps of 3D point 
cloud, which proves the superiority of applying 3D point cloud in 
gait recognition tasks.  The experimental results show that the 
embedding of 3D point cloud information can effectively improve 
gait recognition performances. 

We have compared our proposed method with the most 
advanced gait recognition methods in terms of clothing texture 
confusion and mixing in Table 2, We can observe that, inputting 
the two-dimensional mapping data in the GaitSet method can 
achieve superior experimental results compared with the original 
method in terms of clothing texture confusion.  Meanwhile, our 
data has achieved competitive performances on GaitPart 
(2Dmapping) nm \# 5-6. 

Under these conditions, the accuracy of our proposed method 
based on 3D point cloud is satisfactory, and the accuracy under NM 
condition is higher than that of the original method.  The 
experimental results show that the proposed 3D point cloud method 
has more obvious advantages in the effect of gait recognition, and 
can propose powerful features that are more suitable for 
classification, and has a wide range of application scenarios in the 
field of recognition. 

We also carry out experiments based on the Autoencoder 
mapping method of 3D point cloud.  It can be found in Table 3 
that, compared with the 2D mapping method, the accuracy of the 
Autoencoder method is higher.  The reason is that, autoencoder 
mapping can map 3D point cloud to 2D features by neural 
networks, this process can preserve more essential gait features 
than 2D mapping based on dimension reduction.   

In gait classification models, the average performances based 
on autoencoder mapping are improved.  Experiment results 
demonstrate that the features extracted from the autoencoder can be 
better applied to gait recognition task. 

We have compared the proposed model with the most 
advanced gait recognition methods.  From Table 3, the average 
results of our data in all cases of GaitSet (Autoencoder) are 
obviously better than the experimental results in the original 
method.  Meanwhile, our model has achieved competitive 
performance on BG \# 5-6 / CL \# 1-2.  The experimental results 
are higher than those in the original methods, which indicates that 
the method of 3D point cloud can be applied to the effective 
extraction of gait features. 

We also test the experimental results of 3D point cloud 
mapping by self encoder on GaitPart.  The average accuracy of 
the experimental results under NM state is improved.  The 
experimental results show that the method has obvious advantages 
under NM conditions, indicating that the model can extract more 
robust gait features under normal walking. 

On the GaitGL method, the average accuracy of our 
experiment has improvement.  The experimental results show that 
the method has obvious advantages under NM conditions. 

It can be seen from Table 2 and Table 3 that, under these 
conditions, the average recognition accuracy of the proposed 
method has been improved under NM conditions, indicating that 
the method has advantages under NM conditions, and can extract 
more robust gait features, leading to improved experimental results.  
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At the same time, when combining Autoencoder mapping with the 
gait recognition method, the recognition accuracies under each 
state, including NM, BG and CL, have been improved, which 
comprehensively exceeds the original method, indicating that 3D 

point cloud data can significantly improve the robustness of 
extracted features, effectively reduce the impact of clothing texture 
features on the recognition accuracy, and thus have a good 
recognition effect. 

 

Table 2  Experimental results of various models based on 2D mapping by coordinate simplification. 

Gallery NM#1-4 0°-180° 

Probe 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° 
mean 

GaitSet 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0 
GaitSet(2Dmapping) 89.9 97.9 99.2 96.3 91.8 90.6 94.6 98.3 97.9 96.1 87.2 94.5 

GaitPart 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2 
GaitPart(2Dmapping) 94.0 98.6 99.4 98.6 95.4 92.2 95.5 98.7 99.2 98.0 90.7 96.4 

GaitGL 96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.4 

NM #5-6 

GaitGL(2Dmapping) 94.2 97.0 99.0 97.3 95.7 93.1 96.8 98.5 98.9 97.4 90.2 96.2 
GaitSet 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2 

GaitSet(2Dmapping) 85.7 92.3 93.4 90.2 85.2 80.6 86.1 90.7 94.1 92.8 80.8 88.4 
GaitPart 89.1 94.8 96.7 95.1 88.3 94.9 89.0 93.5 96.1 93.8 85.8 91.5 

GaitPart(2Dmapping) 87.5 92.9 94.3 92.2 86.9 82.9 87.4 93.4 93.4 90.8 82.4 89.5 
GaitGL 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5 

BG #1-2 

GaitGL(2Dmapping) 88.4 93.6 95.2 93.4 91.9 88.1 92.0 95.9 96.5 93.7 87.2 92.4 
GaitSet 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4 

GaitSet(2Dmapping) 67.7 79.5 79.9 75.5 68.5 67.1 70.8 72.5 75.3 73.8 59.4 71.8 
GaitPart 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7 

GaitPart(2Dmapping) 67.0 78.0 82.4 79.1 73.3 68.6 73.6 79.6 79.0 76.3 63.2 74.6 
GaitGL 76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.6 

CL #1-2 

GaitGL(2Dmapping) 70.4 83.8 87.9 85.9 81.4 74.6 80.0 82.0 82.1 79.7 65.0 79.3 
 

Table 3  Experimental results of various models mapped by autoencoder. 

Gallery NM#1-4 0°-180° 

Probe 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° 
mean 

GaitSet 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0 
GaitSet(Autoencoder) 92.1 98.8 99.1 97.2 94.4 92.9 96.5 97.9 98.6 97.8 90.1 95.9 

GaitPart 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2 
GaitPart(Autoencoder) 93.2 98.3 99.0 98.3 94.7 92.8 95.9 98.2 99.1 98.5 92.6 96.4 

GaitGL 96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.4 

NM #5-6 

GaitGL(Autoencoder) 95.5 99.0 99.2 98.0 96.1 94.6 97.6 98.9 99.1 99.1 94.5 97.5 
GaitSet 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2 

GaitSet(Autoencoder) 87.6 93.3 94.5 90.7 88.3 81.2 84.7 92.4 95.9 93.1 83.2 89.5 
GaitPart 89.1 94.8 96.7 95.1 88.3 94.9 89.0 93.5 96.1 93.8 85.8 91.5 

GaitPart(Autoencoder) 89.9 94.2 95.1 92.7 88.6 83.5 88.2 93.3 94.2 93.5 86.3 90.9 
GaitGL 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5 

BG #1-2 

GaitGL(Autoencoder) 92.4 96.3 96.7 94.0 93.1 88.7 91.3 95.9 97.4 95.2 90.5 93.8 
GaitSet 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4 

GaitSet(Autoencoder) 68.5 80.6 80.1 77.8 70.6 68.5 70.3 75.0 76.9 75.2 58.3 72.9 
GaitPart 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7 

GaitPart(Autoencoder) 70.7 81.7 85.5 83.8 75.9 72.9 77.9 81.0 81.8 81.1 67.2 78.1 
GaitGL 76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.6 

CL #1-2 

GaitGL(Autoencoder) 75.0 87.9 89.5 86.1 84.5 79.8 82.0 84.6 84.4 81.9 67.8 82.1 
 

4.3  Comparison with State-of-art Methods 
In this section, we compare the proposed method with eight 

advanced technologies with the same experimental settings, namely 
CNN-LB, skeletonGait, GEINet, deepCNNs, poseGait, SDHF-GCN, 
GaitPart and GaitSet.  The average recognition accuracies under 
the walking condition NM, BG and CL are shown in Table 4. 

To ensure a systematic and comprehensive comparison with 
other existing research methods, we evaluate all the experimental 
results of NM, BG and CL.  Except for CNN-LB[41], which is 
based on the gait energy map, the others are gait recognition 
methods based on gait sequences.  It can be seen that most of the 
methods with better results are based on gait sequences, so it also 
shows that gait sequences can Better express the robust 

characteristics of human walking gait.  In the embedding of our 
3D point cloud data, in the case of GaitGL’s normal walking NM, 
it has reached the highest accuracy.  In the case of wearing a coat 
CL, it also improves at individual angles, so our method effectively 
improves, the effect of gait recognition also proves that 3D point 
cloud data can have great application potential in gait recognition 
field. 

Experimental findings demonstrate a significant improvement 
in angle precision for certain pedestrian states.  This improvement 
is attributed to the ability of mapped 3D data to effectively 
eliminate occlusions, enabling the accurate extraction of human 
body features.  However, suboptimal results are observed for 
specific angles, primarily due to inherent inaccuracies in the 3D 
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modeling algorithm, resulting in insufficient precision in human 
feature extraction. 

We can see that the recognition rate of the proposed method is 
higher.  Especially, this method is capable of obtaining high 
recognition rates in case of clothing changes.  This means that our 
proposed method has a better effect on removing occlusions, which 

is also the advantage of 3D point cloud features.  The 3D point 
cloud data can model essential human body structures regardless of 
clothing changing, while the appearance-based features often 
change due to the clothing.  Then we can see that 3D point cloud 
can inherit the advantages of both model-based and 
appearance-based methods. 

 

Table 4  Comparison of identification accuracy (%) with the most advanced methods. 

Gallery NM#1-4 0°-180° 

Probe 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° 
mean 

CNN-LB 82.6 90.3 96.1 94.3 90.1 87.4 89.9 94.0 94.7 91.3 78.5 89.9 
SkeletonGait 82.3 87.5 91.7 91.3 89.0 88.5 89.1 90.5 92.7 91.0 82.4 88.7 

GEINet 40.2 38.9 42.9 45.6 51.2 42.0 53.5 57.6 57.8 51.8 47.7 48.1 
DeepCNNs 77.3 82.8 85.1 86.0 85.5 85.4 83.7 81.5 80.5 83.9 77.6 82.7 

PoseGait 55.3 69.6 73.9 75.0 68.0 68.2 71.1 72.9 76.1 70.4 55.4 68.7 
SDHF-GCN 77.3 82.8 85.1 86.0 85.5 85.4 83.7 81.5 80.5 83.9 77.6 82.7 
GaitGraph 85.3 88.5 91.0 92.5 87.2 86.5 88.4 89.2 87.9 85.9 81.9 87.7 

GaitSet 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0 
GaitPart 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2 
GaitGL 96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.4 

GaitSet(Autoencoder) 92.1 98.8 99.1 97.2 94.4 92.9 96.5 97.9 98.6 97.8 90.1 95.9 
GaitPart(Autoencoder) 93.2 98.3 99.0 98.3 94.7 92.8 95.9 98.2 99.1 98.5 92.6 96.4 

NM #5-6 

GaitGL(Autoencoder) 95.5 99.0 99.2 98.0 96.1 94.6 97.6 98.9 99.1 99.1 94.5 97.5 
CNN-LB 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4 

SkeletonGait 73.8 80.6 80.7 81.2 77.3 75.5 78.5 76.3 80.8 79.0 74.2 78.0 
GEINet 34.2 29.3 31.2 35.2 35.2 27.6 35.9 43.5 45.0 39.0 36.8 35.72 

DeepCNNs 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4 
PoseGait 35.3 47.2 52.4 46.9 45.5 43.9 46.1 48.1 49.4 43.6 31.1 44.5 

SDHF-GCN 67.5 73.9 73.2 74.3 68.5 68.5 70.5 69.0 62.2 68.7 60.1 68.8 
GaitGraph 75.8 76.7 75.9 76.1 71.4 73.9 78.0 74.7 75.4 75.4 69.2 74.8 

GaitSet 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2 
GaitPart 89.1 94.8 96.7 95.1 88.3 94.9 89.0 93.5 96.1 93.8 85.8 91.5 
GaitGL 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5 

GaitSet(Autoencoder) 87.6 93.3 94.5 90.7 88.3 81.2 84.7 92.4 95.9 93.1 83.2 89.5 
GaitPart(Autoencoder) 89.9 94.2 95.1 92.7 88.6 83.5 88.2 93.3 94.2 93.5 86.3 90.9 

BG #1-2 

GaitGL(Autoencoder) 92.4 96.3 96.7 94.0 93.1 88.7 91.3 95.9 97.4 95.2 90.5 93.8 
CNN-LB 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0 

SkeletonGait 60.7 62.6 68.1 68.5 65.5 65.9 64.8 65.9 67.4 64.6 58.9 64.8 
GEINet 19.9 20.3 22.5 23.5 26.7 21.3 27.4 28.2 24.2 22.5 21.6 23.5 

DeepCNNs 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0 
PoseGait 24.3 29.7 41.3 38.8 38.2 38.5 41.6 44.9 42.2 33.4 22.5 36.0 

SDHF-GCN 63.4 65.4 66.7 64.8 63.0 66.2 69.1 63.3 61.1 65.9 60.7 64.5 
GaitGraph 69.6 66.1 68.8 67.2 64.5 62.0 69.5 65.6 65.7 66.1 64.3 66.3 

GaitSet 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4 
GaitPart 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7 
GaitGL 76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.6 

GaitSet(Autoencoder) 68.5 80.6 80.1 77.8 70.6 68.5 70.3 75.0 76.9 75.2 58.3 72.9 
GaitPart(Autoencoder) 70.7 81.7 85.5 83.8 75.9 72.9 77.9 81.0 81.8 81.1 67.2 78.1 

CL #1-2 

GaitGL(Autoencoder) 75.0 87.9 89.5 86.1 84.5 79.8 82.0 84.6 84.4 81.9 67.8 82.1 
 

4.4  Ablation Experiments 
Influence of 3D point cloud reconstruction method.  When 

using different 3D human pose shape estimation methods to 
reconstruct 3D point cloud data, the modeled human body 
structures are also different.  We have done experiments of 
another human_dynamic method[67] on the 3D human body pose 
estimation.  This three-dimensional modeling is an earlier 
research. 

The generated 3D point cloud is converted into 2D binary 
contour maps.  The obtained 2D binary contour maps are merged 
with original gait images in CASIA-B to expand gait samples.  
The experimental results in Table 5 are obtained. 

For better 3D point cloud reconstruction effect, one advanced  

method ROMP is adopted.  The 3D point cloud data generated by 
ROMP is converted into 2D binary contour maps, and then training 
and testing process are conducted on GaitSet, GaitPart and GaitGL.  
It can be found from the results in Table 6 that, using one of the 
most advanced 3D models can improve the final accuracy.  
Moreover, we can find that the recognition accuracies in Table 6 
are much lower than the optimized recognition accuracies in Table 
7.  The reason is, the results in Table 6 have taken all 3D point 
cloud data as input, since more 3D point cloud data will generate 
more different distribution characteristics with the original gait 
samples in existing datasets, which becomes harder for deep 
networks to fit more complexed gait samples mapped from 3D 
point cloud data. 
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Table 5  Comparison of identification accuracy (%) with the most advanced methods. 

Gallery NM#1-4 0°-180° 

Probe 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° 
mean

GaitSet(human_dynamic) 90.8 96.9 99.0 96.6 92.9 91.6 94.2 96.9 97.6 96.1 87.5 94.6 
GaitPart(human_dynamic) 83.9 90.9 94.6 94.0 89.0 87.3 90.2 95.2 95.2 91.9 78.1 90.0 NM #5-6 
GaitGL(human_dynamic) 80.3 90.5 93.0 92.7 91.6 89.7 90.8 95.3 94.2 91.9 74.5 89.5 
GaitSet(human_dynamic) 86.2 91.3 93.6 90.1 84.4 79.5 84.7 91.0 94.2 91.0 81.1 87.9 
GaitPart(human_dynamic) 72.4 79.9 83.9 79.6 78.7 73.2 76.9 81.5 83.8 75.4 62.1 77.0 BG #1-2 
GaitGL(human_dynamic)  71.5 82.6 87.6 86.8 83.6 78.8 82.9 90.2 89.1 83.1 60.7 81.5 
GaitSet(human_dynamic) 57.2 72.0 77.6 76.2 69.6 67.5 69.3 71.5 72.1 64.9 49.1 67.9 
GaitPart(human_dynamic) 51.1 60.8 62.6 62.0 61.2 58.3 63.7 65.9 60.5 57.0 41.5 58.6 CL #1-2 
GaitGL(human_dynamic)  43.8 63.0 71.5 73.4 69.3 62.9 70.6 74.0 68.9 57.9 34.0 62.7 

 

Table 6  The gait recognition accuracy whose 3D point cloud is generated based on three-dimensional human pose estimation 
method called human_dynamic 

Gallery NM#1-4 0° - 180° 

Probe 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° 
mean 

GaitSet(ROMP) 92.1 98.0 98.4 95.7 94.7 92.8 95.9 97.9 98.2 96.0 87.3 95.2 
GaitPart(ROMP) 83.4 91.7 94.7 91.8 88.8 88.0 89.5 92.6 93.2 91.0 75.8 89.1 NM #5-6 
GaitGL(ROMP) 83.4 92.6 95.1 91.6 90.5 88.3 90.8 95.0 95.2 91.9 76.8 90.1 
GaitSet(ROMP) 86.7 93.0 94.1 89.3 84.5 79.9 84.1 90.6 94.9 90.2 81.3 88.0 
GaitPart(ROMP) 69.0 76.3 81.4 78.0 76.2 72.7 77.1 83.7 84.2 75.9 63.6 76.2 BG #1-2 
GaitGL(ROMP) 69.6 83.7 90.1 90.0 84.8 82.6 86.9 91.3 92.2 83.1 63.9 83.5 
GaitSet(ROMP) 61.1 71.1 75.5 73.2 67.7 64.8 68.9 73.0 76.2 70.1 53.2 68.6 
GaitPart(ROMP) 47.4 63.5 66.1 66.8 62.5 60.1 67.3 68.5 66.7 60.1 48.8 61.6 CL #1-2 
GaitGL(ROMP) 42.1 66.9 78.8 77.9 73.6 68.2 74.2 77.7 74.1 66.1 45.8 67.8 

 

Influence of inaccurate 3D modeling frames.  In 3D 
recognition, when the characters appear in the video and disappear 
in the video, inaccurate 3D modeling will occur in 3D recognition.  
In order to eliminate the negative impact of inaccurate modeling in 

all modeling data at the beginning, we remove the modeling 
samples of the first 10 frames and the last 10 frames, and train and 
test these gait samples on the original GaitSet, named GaitSet (01).  
The data accuracy is shown in Figure 10. 

 
Figure 10  Accuracy based on the GaitSet method in different datasets.   The amount of newly added 3D point cloud data has little impact 

on the NM and BG conditions, but has a certain range of fluctuations on the CL condition, and tends to be stable as a whole 
 

In order to explore the impact of 3D data volume, we gradually 
reduce the generated 3D data in small batches and conduct training 
and testing on the original GaitSet.  The definition of each data is 
given as follows: GaitSet (02) is 15 frames before and after the 
removal, and GaitSet (03) is 20 frames before and after the removal.  
After that, in order to explore the impact of data volume on 
accuracy in more details, and in the CASIA-B data set, it can be 
found that the characters are from right to left, and the picture 
occupation in the video increases with the video playing.  
Therefore, GaitSet (04) is set to remove the first 25 frames and the 
last 20 frames.  Keep the number of frames removed from the 
back unchanged, and continue to remove the previous frames.  
GaitSet (05) removes the first 30 frames, GaitSet (06) removes the 
first 35 frames, GaitSet (07) removes the first 40 frames, GaitSet 
(08) removes the first 45 frames, GaitSet (09) removes the first 50 

frames, GaitSet (10) removes the first 55 frames, GaitSet (11) 
removes the first 60 frames, GaitSet (12) removes the first 65 
frames, and GaitSet (13) removes the first 70 frames, Gaitset (14) 
removes the first 75 frames, GaitSet (15) removes the first 80 
frames, GaitSet (16) removes the first 85 frames, GaitSet (17) 
removes the first 90 frames, and GaitSet (18) removes the first 95 
frames.  The resulting accuracy data are shown in Figure 10.  It 
can be found that the accuracy fluctuates.  The amount of data 
from GaitSet (01) to GaitSet (14) decreases sequentially. 

We have also done extensive experiments taking the GaitSet 
method as backbone, combining different amount of gait images 
obtained from 3D point cloud with original 2D binary contour 
maps of CASIA-B dataset.  The data amount of projected gait 
images is larger than the original CASIA-B dataset.  The accuracy 
can be improved to a certain extent by continuously reducing the 
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size of the projected gait images.  This is due to the model's 
underfitting.  When the data amount reaches a certain threshold, 
the accuracy can be improved. 

Validity of 3D point cloud data.  We combine the gait images 
projected from 3D point cloud data with the binary contour maps of 
the CASIA-B dataset.  We can find that the accuracy of the NM 
based on the GaitPart method has been increased, which is higher 
than the original method.  Based on the GaitSet and GaitGL 
method, there are also improvements in BG and Cl, which also 
proves the universality of the data.  3D point cloud data can 
eliminate the influence of carrying bags and wearing coats, and 
complete data modeling of the shape of the entire human body.  
The method of combining 3D point cloud and 2D binary data can 
achieve higher recognition accuracy. 
4.4  Computational cost analysis 

In the proposed method, most of the computational cost comes 
from the pre-processing process.  That is to estimate the 3D 
human body point cloud from gait image sequences.  We run the 
proposed method on a server equipped with 4 NVIDIA 3080 GPUs.  
and listed the time consumed in different steps in Table 7.  For the 
three estimation steps, it takes about 0.1 seconds to convert the 
image to 3D point cloud data, 0.57 seconds for 2D mapping of 3D 
point cloud, and 0.0017 seconds for final clipping to 64×64.  The 
calculation cost of 2D to 3D is actually low enough.  It is obvious 
that the proposed method is fast and effective. 

 

Table 7  The computational cost of different steps in the 
proposed method 

Step Time/s Description 

3D modeling 0.1 CPU & GPU 

2D Mapping of 3D Point Cloud 0.57 CPU & GPU 

2D feature clipping 64x64 0.0017 CPU 
 

Yang Q G, Chen X, Lan Y B, Deng X L.   Gait recognition 
based on 3D point cloud data augmentation This paper proposes a 
gait recognition method based on 3D point cloud, and demonstrate 
its effectiveness when the clothing and carrying textures becomes 
chaotic.  The 3D point cloud data is mapped to two-dimensional 
feature representations insensitive to texture variances by 
autoencoder mapping.  Specifically, we first obtain the 3D point 
cloud data reflecting essential human body structures, then map the 
3D point cloud to 2D binary gait images of different views, then 
combine the mapped binary gait images with original gait samples 
to expand existing gait datasets.  The experimental results suggest 
that the proposed method is effective in gait recognition tasks.  
This paper demonstrates that 3D point cloud is helpful in reducing 
the influence of dress and carrying and preserving adequate 
essential gait features, which is good at combining advantages of 
both appearance-based and model-based methods. 

While the proposed method for gait recognition based on 3D 
point clouds demonstrates effectiveness, several limitations should 
be acknowledged.  Firstly, challenges exist in acquiring and 
accurately annotating large-scale 3D point cloud datasets, 
potentially impacting the model's generalization and robustness.  
Additionally, mapping 3D point clouds to a two-dimensional 
feature representation using an autoencoder may result in 
information loss, affecting the preservation of fine details crucial 
for accurate gait recognition.  The approach's performance in 
handling certain types or shapes of carried items could be limited, 
and the method’s adaptability to varying environmental conditions, 
such as lighting changes and different backgrounds, needs further 
validation.  Furthermore, the extension of the dataset through the 

combination of mapped binary gait images with original gait 
samples requires comprehensive verification for its effectiveness 
and generalization.  In conclusion, while the method shows 
promise in 3D gait recognition, thorough research and validation 
are necessary to address these limitations and ensure its 
applicability in diverse and complex scenarios. 
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