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Use of UAV images to assess narrow brown leaf spot severity in rice 
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Abstract: Unmanned aerial vehicle (UAV) remote sensing is a potential tool to reduce crop yield losses caused by numerous 
diseases through near real-time detection and monitoring on disease progression.  However, limited research has been 
conducted to effectively integrate this technology into current crop management systems for disease control.  In this study, the 
feasibility of assessing the severity of narrow brown leaf spot (NBLS) in rice based on UAV remote sensing platform was 
explored.  RGB and NIR images were obtained using Sentera Multispectral Double 4K sensor attached to DJI INSPIRE 2 
drone flying at two altitudes (10 m and 15 m).  Ground-truth data on disease severity were collected through visual assessment 
of field plots with different levels of disease severity.  Five out of 21 vegetation indices have a coefficient of determination (R2) 
value greater than 0.8 based on unitary linear regression.  The index with the highest R2 is Excess Green minus Excess Red 
(ExGR).  The results of unitary regression analysis demonstrated more suitability of using RGB images for rice NBLS 
assessment over NIR images.  Further analyses were conducted on disease-infected plot data that were divided into two groups 
with 2/3 of the plot data as modeling set and the remaining as evaluation set.  The ExGR has the highest R2 value and the 
lowest RMSE value in both modeling and evaluation sets regardless of drone flight height (10 m or 15 m).  The RMSE at 15 m 
is lower than at 10 m but there was no significant difference of R2, thus the 15-m flight height is better than the 10-m height in 
detecting the levels of disease severity.  The comparison of ExGR and HIS-H demonstrated that vegetation index is more 
suitability for detecting rice NBLS disease with more spectral information.  When disease severity data were divided into two 
score groups (0 to 5 and 6 to 9 for the low and high levels of disease, respectively) or three score groups (0 to 3, 4 to 6 and 7 to 9 
for the low, moderate and high levels of disease, respectively), the ExGR was more suitable for the detection of the high levels of 
disease.  These results demonstrated the feasibility of using UAV images as a potential tool to assess the severity of NBLS, an 
important fungal foliar disease in rice worldwide. 
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1  Introduction  

Rice is a staple food for more than half of the world's 
population; it plays a critical role in global food security[1].  
However, rice diseases pose a major threat to rice production and 
can cause significant economic yield and quality losses each year[2].  
Narrow Brown Leaf Spot (NBLS) caused by Cercospora janseana 
is one of the diseases limiting rice production[2].  NBLS was first 
discovered in the United States of America in 1906, and has 
become a common disease on rice in Australia, Asia, Latin 
America and North America[3].  In recent years, the damage 
caused by the disease is on the rise[4].  It is vital to develop 
effective prevention and control programs to minimize the damage 
caused by the NBLS disease.   Accurate, real-time monitoring of 
the initiation and development of NBLS is the first step towards 
that goal.  Traditionally, scouting for the presence of diseases and 
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assessment of disease incidence and severity are carried out by 
producers or crop consultants.  However, this process is very 
time-consuming and error-prone due to very limited areas of the 
field that can be covered by scouting[5].  Currently, there has been 
an increasing trend of using non-imaging and imaging spectrum for 
disease detection and assessment.  Graeff et al[6] used 
non-imaging spectral information to study the correlation between 
wheat stripe rust, total lesion and spectral information, and to 
screen spectral bands that are sensitive to rust lesions.  Li et al[7] 
combined principal component analysis (PCA) and probabilistic 
neural network (PNN) to identify rice stem nematode and rice leaf 
roller with an accuracy of 96%.  Huang et al[8] established a model 
based on the first- and second-order differential spectrum to predict 
the probability of Sclerotinia sclerotiorum infection in celery with 
the partial least squares regression.  Yang et al[9] selected green 
normalized difference vegetation index (GNDVI) and soil adjusted 
vegetation index(SAVI) to monitor rice diseases based on imaging 
spectrum.  Huang et al[10] established a model by combining aerial 
hyperspectral images with regression analysis, and retrieved the 
severity of wheat stripe rust.  Delwiche et al[11] found that 
hyperspectral images are suitable for detecting wheat scab 
(FusaHum graminearum Sehw.).  Yang et al[12] compared the 
difference between multispectral and hyperspectral images in the 
extraction of cotton root rot, and found that multispectral images 
are also suitable for large-scale disease monitoring.  Jonas and 
Menz[13] was able to detect wheat powdery mildew and stripe rust 
based on QuickBird satellite images using a spectral angle mapping 
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and hybrid filtering algorithm.  Compared with satellite remote 
sensing, airplane and ground-based sensing systems[14,15], UAV 
(Unmanned aerial vehicle) has the advantage of low cost, 
portability, convenient operation, good timeliness and high 
flexibility[16-18].  UAV platforms have been widely used for crop 
growth monitoring and evaluation[19].  However, the evaluation of 
rice diseases based on UAV is still in its infancy.  Zhang et al 
researched rice sheath blight (Rhizoctonia solani) using images 
obtained from a multispectral sensor attached to a DJI Phantom 3 
drone.  The authors combined measured ground-truth NDVI and 
actual disease data on the ground[20].  Although cultivating 
disease-resistant varieties of rice is the best method for reducing 
losses, chemical control is most effective when diseases occur.  
Recently, effective fungicides for control of NBLS have been 
identified[21,22].  

In this study, we explored the feasibility of using the UAV 
platform to evaluate the severity of rice NBLS at different flight 
heights.  A Sentera (https://sentera.com/) double 4K multispectral 
sensor was attached to a DJI Inspire 2 drone to capture RGB and 
NIR images in the field.  At the same time, ground truth disease 
severity data was collected by a plant pathologist, and the 
prediction model was established based on several indices with the 
best correlation. 

2  Materials and methods 

2.1  Experimental design 
The experiment site was located at the Texas A&M AgriLife 

Research Center (30.060298ºN and 94.293370ºW) in Beaumont, 
Texas, USA.  Rice was planted on May 1, 2019, with a total of 
40 plots (Figure 1).  The NBLS disease severity was rated by 
visual inspection of each plot, using a scale of 0-9, with 0 
indicating no disease and 9 meaning greatest severity.  The 
numbers next to the arrow indicate plot IDs.  Different colors 
correspond the different levels of disease severity (0 to 9). 

 
Figure 1  Study plots and disease severity 

 

2.2  UAV platform and data acquisition 
The 4-motor DJI INSPIRE 2 drone (Figure 2a) has a net 

weight of 3440 g, a maximum takeoff weight of 4250 g, a GPS 
hovering accuracy of 0.5 m ± 0.1m in the vertical direction and 
1.5 m±0.3 m in the horizontal direction.  The Sentera 
Multispectral Double 4K sensor (Sentera, USA) (Figure 2b) 
offers five spectral bands of blue, green, red, red edge, and NIR, 
and is capable of capturing 12.3 MP still images.  Images were 
captured from 2:00 to 3:00 PM on Sep. 6th, 2019 at two different 
flight heights of 10 and 15 m aboveground; the weather was clear 
with very little wind. 
2.3  Data processing 

Image preprocessing (image mosaic, radiation correction, and  

band coincidence) was performed using Photoscan 1.4.1 and Envi 
5.3 software.  The target area was divided into batches with 
ENVI’s vector cutting tool. 

Results for image preprocessing are shown in Figure 3.  Since 
plots 9, 10, 31 and 32 at 10 m flight height had incomplete image 
coverage (Figure 3c and Figure 3d), they were excluded from 
subsequent analysis for both 10 m and 15 m flight height data.  

 

 
a. DJI INSPIRE 2 b. Sentera Multispectral Double 4K sensor

 

Figure 2  UAV and camera 
 

 

  
a. 15 m RGB image b. 15 m NIR image 

  
c. 10 m RGB image d. 10 m NIR image 

 

Figure 3  RGB and NIR images of two flight heights 
 

2.4  Research methods  
Based on ENVI mass cut images, different vegetation indices 

(Vis) and color space HSI, HSV, HSL and YCbCr were used to 
evaluate their ability to detect differences in the severity of the 
NBLS disease at different flight heights (Table 1).  We 
determined the most appropriate vegetation index, color space 
based on unitary linear regression, and established the inversion 
model of rice NBLS with good correlation.  The precision was 
validated by the R2 (coefficient of determination) and root mean 
squares error (RMSE). 

3  Results and discussion 

3.1  Correlations comparison of Vis/color features calculated 
from RGB and NIR images 

The progression of the NBLS disease in rice causes changes in 
plant tissue color, and thus different disease severity levels of crops 
can be detected by digital imaging technique.  However, how 
disease severity is correlated with RGB and NIR spectrum still 
needs to be established based on scientific experiments and 
corresponding data analysis.  In this study, the correlations 
between disease severity and Vis/color features calculated from 
RGB and NIR images were obtained, as shown in Tables 2 and 3 to 
illustrate which image data were more suitable for differentiating 
different levels of rice NBLS.  Five out of the 21 models of RGB 
image had an R2 value 0.80 or greater, which were the ExGR, 
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NGRDI, RGRI, VDVI, HSI-H, respectively (Table 2).  The index 
EXGR at 15 m flight height was the best, with R2 value of 0.89 and 
RMSE value of 0.70, followed by VDVI with an R2 of 0.8429 and 
RMSE of 0.8334.  Similar results were observed at 10 m flight 
altitude.  For the NIR image (Table 3), the index DVI at 15 m 
flight height had the highest R2 (0.4097) and the lowest RMSE 
(1.6156), followed by NIR-Red Edge with an R2 of 0.3950 and 
RMSE of 1.6851.  At 10 m flight height, the R2 value of NIR-Red 
Edge was the 0.3743 with RMSE=1.6634, and followed by DVI 
(R2

 = 0.3704, RMSE = 1.6686).  Through the above correlation 
analysis, it is demonstrated that results of RGB image are better 
than those of NIR image, and the correlations of visible light Vis are 
higher than those color space transformations.  Moreover, there is 
no significant difference between two flight heights, only R2 value 
of the correlation at 15 m is a little better than those of 10 m flight 
altitude.  These results suggest that indices that incorporate more 
spectral band (three bands) contain abundant information for more 
effective disease detection, thus the Vis calculated from RGB/NIR 
images have higher correlation than single band.  However, the 
results of NIR image are lower than RGB image, this may be due to 
lack of differentiation in NIR bands to effectively separate different 
NBLS severities, but additional studies are needed to verify these 
differences.  Data were only collected from two flight heights (10 
and 15 m), future experiments should expand the flight height to 5 
and 20 m to further explore the effectiveness of disease detection. 
3.2  Modeling and validation of rice NBLS based on Vis and 
color features 

Results from Tables 2 and 3 suggests that there are better 
correlations between Vis/color features and disease severity for the 
RGB image.  The coefficients of determination R2 of ExGR, 
NGRDI, RGRI, VDVI, HSI-H are above 0.8 and higher than that of 
calculated from NIR image.  Thus, we chose these Vis/color 
features to establish the models of disease detection, and analyzed 
which feature is best for rice NBLS identification.  Data from the 
disease-infected plots were divided into two groups with the ratio 
of 3:1; data from 27 plots were used as training sets and data from 
the remaining nine plots as test sample sets.  

 

Table 1  Vegetation indices calculated from NIR and RGB 
images 

Vis Formulas 

Difference Vegetation Index (DVI) = NIR-R 

Normalized Difference Vegetation Index (NDVI) = (NIR – R)/ 
(NIR+R) 

Ratio Vegetation Index (RVI) = NIR/R 

Transform Vegetation Index(TVI) = ((NIR – R)/(NIR+R)+0.5)1/2

NIR - Red Edge 

VI840 = (NIR – Red Edge)/(NIR + Red Edge) 

NIR 
indices 

VI720 = (Red Edge – R)/(Red Edge + R) 

R*=R/(R+G+B) 

G*=G/(R+G+B) 

B*=B/(R+G+B) 

Excess Green (ExG)=2G*-R*-B* 

Excess Red (ExR)=1.4R*-G* 

ExGR=ExG-ExR 

Normalized Green-Blue Difference Index (NGRDI)= =(G – R)/ 
(G+R) 

Red-Green Ratio Index (RGRI)=R/G 

RGB 
indices 

Visible-band Difference Vegetation Index (VDVI)=(2G – R – B)/ 
(2G+R+B) 

 

Table 2  Correlations between disease severity and Vis/color 
features calculated from RGB image 

15 m flight height 10 m flight height Vis/color 
features R2 RMSE R2 RMSE 

ExG 0.8343 0.8562 0.7595 1.0312 

ExGR 0.8904 0.6965 0.8900 0.6976 

ExR 0.5849 1.3548 0.5711 1.3771 

NGRDI 0.8319 0.8620 0.8495 0.8155 

RGRI 0.8305 0.8657 0.8433 0.8323 

VDVI 0.8429 0.8334 0.8601 0.7866 

HSI-H 0.8292 0.869 0.8435 0.8321 

HSI-S 0.3605 1.6816 0.4002 1.6286 

HSI-I 0.0419 2.0584 0.0181 2.0837 

HSL-H 0.7777 0.9913 0.7885 0.9688 

HSL-S 0.7206 1.0711 0.7233 1.0252 

HSL-L 0.0677 17.521 0.0270 2.0743 

HSV-H 0.7704 1.0078 0.8411 0.8385 

HSV-S 0.4654 1.5375 0.5382 1.5165 

HSV-V 0.0210 2.0953 0.0028 2.0999 

YCbCr-Y 0.0187 2.0831 0.0037 2.0989 

YCbCr-Cb 0.0673 2.0308 0.0694 2.0285 

YCbCr-Cr 0.8285 0.8708 0.7858 0.9735 

R* 0.2409 1.8322 0.2154 1.8626 

G* 0.0861 2.0102 0.1603 1.9269 

B* 0.1718 1.9137 0.1718 1.9150 
 

Table 3  Correlations between disease severity and Vis 
calculated from NIR image 

15 m flight height 10 m flight height Vegetation 
indexes R2 RMSE R2 RMSE 

DVI 0.4097 1.6156 0.3704 1.6686 

NDVI 0.0009 2.1019 0.1518 1.9637 

RVI 0.0000 2.1028 0.1651 1.9215 

TVI 0.0011 2.1016 0.1756 1.9094 

NIR-Red Edge 0.3950 1.6851 0.3743 1.6634 

VI840 0.0494 2.0503 0.0210 2.0806 

VI720 0.1678 1.9183 0.1718 1.9150 
 

The modeling and verification results at two flight heights of 
15 m and 10 m were showed in Table 4.  ExGR has the highest 
determination coefficient R2 and the lowest RMSE value in both 
modeling and verification results regardless of flight height (10 m 
or 15 m).  At 15 m flight height, the modeling R2 value of ExGR 
reaches 0.9494 with RMSE equals the 0.5864, while the 
verification R2 value reaches 0.9397 with RMSE=0.8915.  At   
10 m flight height, the R2 value of modeling is the 0.9561 with 
RMSE=0.6288, the verification results has an R2 of 0.9312 and 
RMSE of 0.9991.  Although there is no significant difference for 
coefficient of determination R2 between two flight heights, the 
RMSE value at 15 m flight height is lower than the result of 10 m.  
Therefore, 15 m flight height is more suitable for disease detection, 
with additional saving in flight time.  Moreover, we also found that 
color feature HIS-H of single band has a R2 value of 0.9066 at 15 m 
flight height, and it is lower than that of ExGR of two bands.  The 
results were similar to those at 10 m flight height.  Therefore, it can 
be concluded that that indices with more spectral information are 
more effective to identify the rice NBLS.  
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Table 4  Modeling and validation of rice NBLS 

Modeling results Verification results 

R2 RMSE R2 RMSE Vis/color features 

15 m 10 m 15 m 10 m 15 m 10 m 15 m 10 m 

ExGR 0.9494 0.9561 0.5864 0.6288 0.9397 0.9312 0.8915 0.9991 

NGRDI 0.9154 0.9290 0.7407 0.8194 0.9184 0.9167 0.9906 1.0306 

RGRI 0.9126 0.9290 0.7409 0.8183 0.9152 0.9113 1.0060 1.0938 

VDVI 0.9209 0.9357 0.7061 0.7801 0.9207 0.9170 0.9933 1.0052 

HIS-H 0.9066 0.9278 0.7469 0.8448 0.9356 0.9104 0.9664 1.0746 
 

3.3  Modeling analysis under different disease severity grading 
The above analysis identified the ExGR as the best index for 

disease severity detection.  To determine the effectiveness of the 
ExGR in detecting rice NBLS with a different disease severity 
classification scheme, we divided disease severity data into two 
groups (0~5 and 6~9 for the low and high levels of disease severity, 
respectively) and three groups (0~3, 4~6 and 7~9 for the low, 
moderate and high levels of disease severity, respectively).  As 
shown in Table 5, regardless of the number of disease severity 
groupings, the R2 of the ExGR are always higher than other 
vegetation indexes and color feature.  In the two-grade grouping 
scheme, R2 changed from 0.8191 to 0.9209, while R2 changed from 
0.7261, 0.8847 to 0.9242 for the three-grade grouping scheme.  
The results indicate that it is more effective to detect the high level 
of disease severity than the low level of disease severity.  
Therefore, the ExGR is more suitable for the detection of high levels 
of disease infection. 

 

Table 5  Coefficients of determination with different disease 
classification schemes 

Disease severity classification 

Two grades Three grades Vis/color feature 

0~5 6~9 0~3 4~6 7~9 

ExGR  0.8191 0.9209 0.7261 0.8847 0.9242

NGRDI  0.7632 0.9147 0.6500 0.8503 0.9208

RGRI R2 (15 m) 0.7629 0.9123 0.6450 0.8516 0.9197

VDVI  0.7450 0.9230 0.6072 0.8448 0.9338

HIS-H  0.7408 0.9163 0.6234 0.8308 0.9284

4  Conclusions 

In this study, UAV-based RGB and NIR images were obtained 
at two different heights of 10 m and 15 m over an experimental 
field with 36 research plots.  Ground truth assessment of disease 
severity was obtained on the same day.  Results of unitary linear 
regression were quantitatively evaluated.  Five inversion models 
of RGB image (ExGR, NGRDI, RGRI, VDVI, HSI-H) show higher 
R2 values and low RMSE values.  The best model is ExGR with 
an R2 of 0.8904, and RMSE of 0.6965 at 15 m flight altitude.  
Among the results of unitary linear regression based on NIR image, 
DVI is the best, and the highest R2 at two flight altitudes is 0.4097.  
The correlation analysis above showed more suitability of RGB 
image for detecting rice NBLS disease, and the correlations of 
visible light Vis are higher than those color space transformations.  
Moreover, comparisons of two heights showed there was no 
significant difference between two flight heights.  Furthermore, the 
modeling and verification results showed the ExGR has the highest 
determination coefficient R2 and the lowest RMSE value.  
Comparing RMSE between two heights, we conclude that 15 m 

flight height is more suitable for detecting the rice NBLS disease.  
Finally, different disease severity level classifications suggested the 
ExGR is more suitable for the detection of high levels of disease 
infection.  In the future studies, flight plans should be optimized 
with more levels of flight height, more vegetation indexes, color 
spaces and other features to improve the inversion model, which 
may provide guidance for disease prevention and control. 
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