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Abstract: USDA-ARS (Agricultural Research Service) Water Management and Systems Research Unit established a Limited 

Irrigation Research Farm (LIRF) in Northern Colorado in 2008 to respond the urgent need of sustaining irrigated agriculture in 

semi-area regions with limited water resources and increasing population.  Agricultural research has been conducted at this 

facility to optimize irrigation strategy, accurately quantify crop water use, develop sensor-based irrigation scheduling 

algorithms, and investigate physiological responses to crop water stress.  An unmanned aerial system (UAS) was developed 

and used to collect multispectral and thermal imagery for irrigation and other field applications.  The results in the study 

confirmed the capability of UAS to collect high-quality, high spatial and temporal resolution crop data for field-based 

agricultural applications and aid farmers to manage their water resources and sustain crop production in a more advanced way. 

Keywords: NDVI, CRSI, CWSI, maize, water stress, genotype, yield 

DOI: 10.33440/j.ijpaa.20190202.50. 

 

Citation: Zhang H, Yemoto K.  UAS-based remote sensing applications on the Northern Colorado Limited Irrigation 

Research Farm.  Int J Precis Agric Aviat, 2019; 2(2): 1–10. 

 

1  Introduction  

Farmers in Northern Colorado and other semi-arid regions 

globally face a crucial challenge of maintaining crop production in 

the face of continuously declining irrigation supplies.  Water 

resources initially allocated for agricultural production are 

increasingly being diverted for municipal, industrial, and 

environmental uses.  Therefore, it is urgent for farmers to improve 

the tools and practices they use to manage their farms in order to 

save water and maintain yields to feed an increasing global 

population, which could hit 9.7 billion in 2050[1].  

Maize is a major crop for human consumption and an 

important feed for livestock both regionally and globally.  More 

irrigated land is planted to maize than any other crop in the U.S., 

and this trend is increasing[2,3].  Many studies have been 

conducted on water management strategies that maximize maize 

production, such as agronomic practices and irrigation systems, and 

maximize water-use efficiency, such as growth stage-based deficit 

irrigation[4,5].  In semi-arid Northern Colorado, maize (Zea mays 

L.) is grown mostly under irrigated conditions.  Average annual 

precipitation in the region (2008-2013) was about 197 mm, and 

average maize crop evapotranspiration (ETc) was 666 mm[6]; thus, 

irrigation is imperative during the growing season to meet crop 

water requirement.  When irrigation water supplies are limited, 

producers must consider alternative water management strategies to 

maintain economic productivity.  Many studies have been 

conducted on water management strategies that maximize maize 

production[6-9]. 
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USDA-ARS (Agricultural Research Service) Water 

Management and Systems Research Unit established a Limited 

Irrigation Research Farm (LIRF) near Greeley, Colorado in 2008 

and has been conducting research since then on optimizing water 

management strategies to sustain irrigated agriculture in semi-arid 

regions with limited water supplies.  Scientific methods were 

developed to manage irrigation, accurately quantify crop water use, 

develop sensor-based irrigation scheduling algorithms, and 

investigate physiological responses to crop water stress[6-19]. 

Remote sensing technology has been applied in precision 

agriculture for a few decades.  Recent rapid advances in unmanned 

aerial vehicles (UAVs), sensor technology, image and big-data 

processing techniques have yielded data with higher spatial and 

temporal resolution than other remote sensing platforms.  As a 

result, UAV-based remote sensing data and products have the 

potential to lead precision agricultural management to a higher 

level that is more affordable, reliable and cost-effective[20-26].  In 

2017, we developed a UAV-based multispectral and thermal 

system (UAS) to collect remote sensing data for irrigation 

management.  In this paper, we reported in detail on how the UAS 

was utilized on the research farm for irrigation control, crop 

water-use estimation, crop yield prediction, and other field 

applications.  

2  Material and methods 

2.1  ARS Limited Irrigation Research Farm, experimental 

design, and irrigation management 

2.1.1  Experiment site and treatment design 

Research was conducted on the Limited Irrigation Research 

Farm (LIRF) in Greeley, Colorado USA (40°26′53.78″N, 

104°38′20.80″W).  A 4.7-ha experimental field was divided into  

4 equal sections.  From 2017-2019, the western two sections and 

eastern two sections were used to grow maize and sorghum in 

rotation.  Maize was planted in the eastern two sections in 2017 

and 2019 and the western two sections in 2018.  Each field section 

was divided into four replicate blocks, and each block was divided 

into six 9×43 m plots containing 12 N-S oriented crop rows   
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(0.76 m row spacing) on which six irrigation treatments were 

randomly assigned (Figure 1).  In 2017 two variables (8 genotypes 

of maize and 3 irrigation treatments) were tested, with the irrigation 

treatments receiving 100, 70, and 40 percent of full crop 

evapotranspiration (ETc).  There was a total of 96 plots where 

traditional maize genotypes A, B, E, and H were planted on the 

north side and drought-tolerant maize genotypes C, D, F, and G 

were planted on the south side.  The commercial codes of these 

Syngenta maize genotypes A-H are N68B, N47L, N59B, N68K, 

G10D98, G12J11, N70M, G09H57, respectively.  

 
Figure 1  Experimental design with 8 maize genotypes and 3 

levels of irrigation on the Limited Irrigation Research Farm. 

Genotypes A-H are N68B, N47L, N59B, N68K, G10D98, G12J11, 

N70M, G09H57, respectively.  Color code represents irrigation 

treatments: 100% of ETc (green), 70% of ETc (yellow),  

and 40% of ETc (red) 
 

Irrigation water from a groundwater well was delivered to the 

end of each plot through underground PVC pipe and applied to 

each crop row through surface drip irrigation tubing with 30-cm 

in-line emitter spacing (1.1 L h−1 per emitter).  The east and west 

edges of each crop section contained a 6-row buffer, with all 

measurements taking place in the middle 4 to 6 rows.  Irrigation 

applications were measured independently for each treatment with 

turbine flowmeters (Badger Record all Turbo 160 with RTR 

transmitters, Badger Meter, Milwaukee, Wisconsin), which were 

cross calibrated to ensure accuracy and consistency.  Irrigation 

applications were controlled by and recorded with Campbell 

Scientific CR1000 data loggers (Campbell Scientific, Logan, UT, 

USA).  Maize was planted on May 4, 2017, at a seeding rate of 

86,500 seeds ha-1 and resulted in a final population of 74,647 plants 

per ha.  Fertilizers were applied at planting and in-season with the 

irrigation water to avoid nutrient deficiencies on all treatments. 

The three irrigation treatments with varying levels of deficit 

irrigation were arranged in a randomized block design with four 

replications.  Deficit irrigation was applied during the late 

vegetative (V8~VT) and maturation (R4~R6) growth stages[7,8].  

The full irrigation treatment was targeted to meet potential 

non-stressed crop ETc, as predicted by the reference 

evapotranspiration (ETr) and crop coefficients from FAO-56 

methodology[27,28].  The 70% and 40% irrigation treatments were 

irrigated with 70 and 40 percent of fully irrigated treatment during 

late vegetative and maturation stages.  All treatments received 

100% ETc from planting through V7, and during the reproductive 

(VT to R4) growth stage. 

2.1.2  Irrigation control and water balance 

Meteorological data were taken by an on-site Colorado 

Agricultural Meteorological Network (CoAgMet, 

http://ccc.atmos.colostate.edu/~coagmet/) station GLY04.  These 

data include hourly precipitation, air temperature, relative humidity 

(and subsequent vapor pressure deficit), solar radiation, and wind 

speed taken at 2 m above a grass reference surface.  Alfalfa-based 

ETr was calculated from hourly weather data by the ASCE 

standardized Penman-Monteith equation[27], and daily values are 

sums of hourly values. 

An access tube installed in the middle row of each plot was 

used to determine soil water content (SWC) by a neutron moisture 

meter (CPN-503 Hydroprobe, InstroTek, San Francisco, CA, USA).  

The SWC was measured at depths of 30, 60, and 90 cm, 2 or 3 

times per week before or after irrigation in each northside plot 

where genotypes A, C, E and H were planted.  SWC of the 0 to  

15 cm layer was measured with a portable time domain reflectometer 

(MiniTrace, Soil Moisture Equipment Corp, Santa Barbara, CA) in 

the row near the neutron moisture meter access tube.  Field 

capacities from each layer were estimated based on observations of 

SWC from the current season and the previous    5 years of study 

on the site.  The soil water deficit (SWD) for the active root zone 

of each plot was calculated by sum of the difference between SWC 

and field capacities in each layer, normalized by layer thickness.  

Soil water storage changes (ΔS) were calculated by a soil water 

balance, with precipitation (P) and irrigation (I) as water inputs, 

and runoff (RO), deep percolation (DP) and evapotranspiration 

(ETc) as water outputs (ΔS = P + I – RO – DP – ETc).  For the 

experimental field, RO was assumed zero due to relatively small 

field slope and precipitation amounts, adequate soil infiltration and 

surface residue, and controlled drip irrigation.  Deep percolation 

was assumed to occur when precipitation exceeded the SWD in the 

full root zone (105 cm) at the time of precipitation and was 

calculated as the precipitation amount minus soil water deficit (DP 

= P – SWD).  For other days, a daily time-step soil-water balance 

model was developed based on the FAO-56 dual crop coefficient 

approach [28] to estimate daily ETc.  The model was based on 

alfalfa reference ETr and initial and full-cover basal crop 

coefficients (Kcb), respectively[29], and adjusted for measured crop 

canopy growth and senescence.  Based on the full season 

correlation between factional canopy cover (fc) and Kcb reported 

by[11], where Kcb = 1.05 for fc > 0.8 and Kcb = 1.10fc + 0.17 for fc < 0.8 

(initial- and mid-season).  The model estimated the daily ETc 

(including soil evaporation and transpiration), DP, and SWD.  

More details on soil water balance calculation can be referred to[17].  

2.1.3  Plant measurements 

Canopy cover fc was measured in the center of each plot 

approximately weekly near solar noon by the UAS from a nadir 

view 15 m above the ground surface (see section 2.2).  The digital 

image pixels were differentiated between green plant canopy and 

background (soil, surface residue, and senesced leaves) with an 
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in-house developed image analysis method in Python 3.5.3.   

In the FAO-56 dual crop coefficient methodology[28], ETc = 

(Kcb*Ks + Ke)*ETr.  Here, the Kcb is defined as the ratio between 

crop potential transpiration and alfalfa-based reference ETr and 

used to determine crop potential transpiration under well-watered 

conditions.  For crop under water-limited conditions, actual 

transpiration will be limited by soil water supply, so the water 

stress coefficient (Ks) will multiply Kcb to account for the influence 

of water stress on crop transpiration.  Ke is a wet soil evaporation 

coefficient.  Traditionally Ks was calculated using FAO-56 soil 

water depletion method using equation (TAW – Dr)/(TAW – RAW), 

where TAW is the total available soil water in the root zone (mm), 

Dr is the root zone depletion (mm), and RAW is the readily 

available water (mm).  In this study, we used a canopy 

temperature derived crop water stress index (CWSI) to determine 

the stress coefficient as Ks = 1 – CWSI.  Canopy temperature was 

measured using the UAS (see section 2.2).  CWSI was calculated 

using the method given in Han et al.[17], with empirical-model 

estimate of non-transpiring and full transpiring conditions.  

Whole-plant transpiration (i.e., sap flow) was measured on two 

plants per plot from genotypes A, C, E and H in 100% and 40% 

treatments with stem heat balance sap flow EXO sensors 

(Dynamax, Inc, Houston, TX, USA)[30], thus a total of eight sensors 

were installed for each treatment.  Continuous data were collected 

at 15-minute interval and converted to hourly data from late Jul to 

Sep in 2017. More details on sap flow measurements can be found 

in[17].   

Grain was harvested on Nov 9, 2017, from each plot (20.7×  

6.1 m2) using a 4-row combine with an active yield monitor.  Each 

plot had two passes of the combine of 4 rows each pass.  A weigh 

wagon was used to record each pass and replicates.  Grain was 

threshed with a stationary thresher (Wintersteiger Classic ST, 

Wintersteiger AG, Ried, Austria), weighed and subsampled for 

moisture content determination.  Grain moisture content at harvest 

was measured with a Dickey-john GAC500-XT Moisture Tester 

(Dickey-john Corp, Aubern, IL, USA).  Yield (kg/ha) was 

normalized to 15.5% moisture content (commercial yield standard). 

2.1.4  Transpiration estimation 

Crop transpiration was estimated using two methods based on 

data described in sections 2.1.2 and 2.1.3.  The UAS method 

estimated crop transpiration as Kcb*Ks*ETr.  The Kcb coefficient 

was 1.10 fc + 0.17 (or 1.05 for fc > 0.8), and Ks coefficient was 

estimated as 1–CWSI, with CWSI calculated using canopy 

temperature derived from UAV data (FLIR Tau2 LWIR).  The 

water balance (WB) method neglected soil evaporation for 

full-canopy conditions, resulting in crop transpiration estimated as 

ETc = (I + P – ΔS – DP). On days with no I, P, or DP, ETc is 

simply –ΔS, which is determined as the 24-hour change of 

depth-weighted average of soil moisture measurements from both 

TDR (0-15 cm) and neutron probe (15-90 cm). 

2.1.5  Soil survey 

The largest portion of the field experimental area contains 

Olney fine sandy loam soil (fine-loamy, mixed, superactive, mesic 

Ustic Haplargids).  Other soils in the field are Nunn clay loam 

(fine, smectitic, mesic Aridic Argiustolls) in the southeastern 

section[31].  Apparent electrical conductivity (ECa) survey of the 

field was conducted via a Veris 3100 (Veris Technologies, Salina, 

KS).  The Veris 3100 measures ECa as a voltage drop across a 

pair of coulter-electrodes. Two EC arrays allow for mapping ECa 

to depth ranges of 0-30 cm and 0-90 cm (Figure 2).  Scudiero et 

al.[32] has developed a method to use satellite canopy reflectance to 

assess soil salinity at reginal scale.  In this study, the canopy 

response salinity index (CRSI) [32] was tested to estimate crop yield 

due to the soil variability.  

 
Figure 2  ECa survey of field conducted in 2012 with Veris 3100.  ECa maps are split into 2 depths 0-30 cm (left) and 0-90 cm (right) 

 

2.2  Unmanned aerial system   

2.2.1  Unmanned aerial vehicle and payload 

The UAV platform is a DJI Spreading Wings S900 hexacopter  

(Da-Jiang Innovations Science and Technology Co., LTD, 

Shenzhen, China) with 3DR Pixhawk PX4 flight 

controller/autopilot (3D Robotics, Berkley, CA).  The payload for 
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the UAS consists of a FLIR Tau2 LWIR (FLIR Systems, Inc., 

Wilsonville, OR) and Tetracam Mini-MCA6 multispectral cameras 

(Tetracam Inc., Chatsworth, CA).  The custom carbon fiber 

mounting tray for the payload was designed and built by UASUSA 

(UASUSA, Longmont, CO).  The Tau2 contains a 640×480-pixel 

(0.3 megapixel) image sensor and has a spectral range from 7.5 to 

13.5 µm.   The Mini-MCA6 features a 6-camera array, with each 

camera containing 1280×1024-pixel (1.3 megapixel) image sensor.   

Each of the 6 cameras is fitted with a band-pass filter with 10 nm 

bandwidth.  The center wavelength of filters used in the study 

were 860, 720, 680, 570, 530, and 490 nm. 

2.2.2  Image acquisition 

To ensure a common exposure setting across flights, the 

camera shutter speed was set/locked pre-flight using an 18% 

reflectance target.  The shutter speed setting was maintained 

throughout flight mission; however, the setting was reset in the 

event of environmental or temporal changes between multiple 

flight missions.  Flight missions were separated into low-altitude 

high-resolution plot to plot mission suitable for canopy cover 

measurements and high-altitude fly missions suitable for 

orthomosaics. 

Canopy cover missions were flown at 15 m above ground level 

(AGL) which gives a pixel resolution of 0.8 cm and an image 

footprint of 10.4×8.3 m.  The missions were programed with 

waypoints above the center of each plot, with the UAV orientation 

locked so the vehicle always faced toward east.  At each waypoint 

the UAV was set to hover pre and post image acquisition to ensure 

high quality images free of motion blur and orientation bias.  

Flights were conducted at 11:00AM with the field split into two 

10-minute missions. 

Orthomosaic missions were flown at 70 m AGL which gives a 

pixel resolution of 3.79 cm, with an image footprint of 48.6 m× 

38.3 m.  The missions were programed to fly north-south with the 

UAV orientation locked so the vehicle always faced toward north.  

Waypoints were programed to have an image overlap of 90% and 

70% sidelap with a low flight speed around 1.5 m/sec to minimize 

motion blur.  The flight pattern over the study site was split into 

two missions with one transect of overlap between the two 

missions.  Flights were conducted at 12:00PM, with each mission 

taking about 11 minutes.  

2.2.3  Ground truth 

For each flight, pre- and post-flight images of a set of 

reflectance targets were taken.  Images of three reflectance targets 

(99%, 50% and 10% Labsphere Spectralon targets; Labsphere, Inc., 

North Sutton, NH, USA) were taken at altitude.  

Spectroradiometer ground truth measurements of the reflectance 

targets were also taken pre and post flight using Spectral Evolution 

PSR-1100 sepctroradiometer (Spectral Evolution, Lawrence, MA, 

USA).  The images of the reflectance targets were used to create a 

calibration curve to convert the multispectral images from digital 

numbers (DNs) to reflectance.  Aside from the set of reflectance 

targets, five 45×45 cm ground control panels were strategically 

placed across the field and located using Trimble GPS (Trimble 

Inc., Sunnyvale, CA, USA).  The ground control points were used 

to increase positional accuracy of completed orthomosaics. 

2.2.4  Image processing 

The 6-band multispectral images were registered using 

PixelWrench 2 software (Tetracam Inc., Chatsworth, CA, USA) to 

create multipage Tiff files.  Spectroradiometer data were 

downloaded and processed using DARWin SP Data Acquisition 

and Analysis software (Spectral Evolution, Lawrence, MA, USA).  

As the spectroradiometer has a bandwidth of 1.5 nm, the average 

readings around the center wavelength of each filter were 

calculated.  GPS coordinates were extracted from the Pixhawk 

telemetry flash log.  The autopilot adds a 1-second delay to CAM 

message; therefore, to improve accuracy of GPS location 

corresponding to image location, 1-second was subtracted from 

CAM message timestamp, and the coordinates associated to the 

closest GPS timestamp was used.  The 6-band multispectral 

orthomosaic was created using Icaros OneButton Professional 5.1 

(Icaros US, Manassas, VA, USA).  Using ESRI ArcGIS 10.4 

(ESRI, Redlands, CA, USA), the multispectral images of the 

reflectance targets were sampled for each band.  The sampled  

area for each reflectance target was the same, with the sample area 

taken from the center of each reflectance panel.  The sampled 

points from the multispectral images and the calculated reflectance 

values from the spectroradiometer were used to create a linear 

equation for each band to convert raw digital numbers to 

reflectance values. 

Various vegetative indices (VIs), such as normalized 

difference vegetation index (NDVI)[33], soil-adjusted vegetation 

index (SAVI)[34], transformed chlorophyll absorption in reflectance 

index (TCARI)[35], and CRSI[32], were calculated from 6-band 

reflectance images in ArcGIS using the following equations (1) – 

(4): 
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where, NIR is near infrared (860 nm band) reflectance; R is red 

(680 nm band) reflectance; L is a canopy background adjustment 

factor; RE is red edge (720 nm band) reflectance, and G is green 

(530 nm band) reflectance, and B is blue (490 nm band) 

reflectance. 

2.3  Statistical analysis 

Ordinary least square linear regression was performed to 

determine the relationship between dependent and independent 

variables.  The fitting quality of the model was evaluated by the 

adjusted coefficient of determination (R2_adj), and Root Mean 

Square Error (RMSE, eq. (5)).  

2

1

1
RMSE ( )

n

i ii
P O

n =
= −              (5) 

where, Pi is the predicted value; Oi is the observed value; O  and 

P  are the mean observed and predicted values, respectively, and n 

is the number of data pairs.  The statistical analyses were 

conducted in JMP 11 (JMP software, Cary, NC) 

3  Results and Discussion  

3.1  Fractional canopy cover, crop coefficient, and crop 

transpiration 

Plot level UAS images were taken from four genotypes (A, C, 

E, and H) in three irrigation treatment plots (40, 70, and 100% ETc) 

to measure fractional canopy cover, fc.  All 100% of ETc 

treatments reached full canopy cover around 83 days after planting 

(DAP), but fc values in 70% and 40% of ETc treatments were about 

5% and 20% less than those for fully irrigated crops, respectively 
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(Figure 3).  Among the four genotypes under 40% of ETc 

treatment, genotype E had the smallest canopy cover, followed by 

drought-tolerant genotype C.  Although all plots reached 

reproductive R1 stage at the same day (DAP 90), water stress 

slowed the process to reach full canopy cover, decreased the fc at 

full canopy cover, and sped up the process of senescence in the late 

season.  Figure 4 shows the Kcb curves derived from fc.  When fc 

was greater than 80%, constant Kcb value 1.05 was used for the 

mid-season.  Additional canopy during the mid-season did not 

significantly improve transpiration[11].  

 

Figure 3  Fractional canopy cover (fc) derived from UAS imagery 

taken in the 2017 growing season.  Lines labeled by irrigation 

level (40, 70, 100% of ETc) and genotype (A, C, E, H) 

 

Figure 4  Crop coefficient (Kcb) estimated from fractional canopy 

cover (fc) in the 2017 growing season.  Lines labeled by irrigation 

level (40, 70, 100% of ETc) and genotype (A, C, E, H) 

The daily crop transpiration was calculated as ETr multiplied 

by (1 – CWSI) and Kcb, where ETr was taken from weather station 

and CWSI and Kcb were derived from UAS images.  The results 

were compared with daily sap flow data on Aug 30 and Sep 11, 

2017.  Figure 5 shows transpiration derived by UAS images or 

soil water balance model compared to the sap flow measurement.  

The UAS-derived crop transpiration had better performance than 

those calculated by soil water balance model with higher adjusted 

R2 and smaller RMSE.  Soil water balance model predicted lower 

transpiration for stressed plants, but UAS derived transpiration was 

higher than sap flow measurements for fully irrigated crops.  

 
Figure 5  Correlation between plant transpiration estimates 

derived from sap flow measurement versus UAS or soil water 

balance (WB) methods (data includes measurements from 

genotypes A, C, and H under 100% and 40% of ETc treatments on 

Aug 30 and Sep 11, 2017) 
 

3.2  Time series of VI images and crop yield 

Orthomosaic missions were completed on Jul 21 (late 

vegetative stage), Aug 30 (reproductive stage) and Oct 16, 2017 

(maturation stage).  Figure 6 shows NDVI and CRSI images 

acquired over all the plots.  40% of ETc treatment plots can be 

differentiated from other treatments with lighter pixel color on Jul 

21.  All plots were fully irrigated during reproductive stage, so the 

NDVI and CRSI images on Aug 30 show more homogeneous color 

over the plots.  The maximum VI values were obtained from fully 

irrigated treatments for all genotypes.  
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Figure 6  Orthomosaics UAS NDVI and CRSI images acquired on Jul 21, Aug 30 and Oct 16, 2017 over the experimental site at LIRF 

 

The average maize yield and VI on different days (Jul 21, Aug 

30, Oct 16) were obtained for each treatment to determine the 

accuracy of using VIs for yield estimation.  Table 1 shows the 

best result of linear regression on Jul 21 was NDVI, with higher R2 

of 0.826 and smaller RMSE of 1414 kg/ha than the other VIs.  

However, later in the season, CRSI had better performance than the 

other VIs, which confirmed soil EC variation in the field could 

have impact on grain yield.  TCARI was better than NDVI at the 

reproductive stage but performed poorly at the maturation stage.  

The reason for this is that TACRI was designed to be more 

sensitive to leaf chlorophyll content[35].  Leaves with a higher 

concentration of chlorophyll have a direct correlation with grain 

yield, and water stress decreased chlorophyll content in the 

leaves[36].  The RMSE of all VIs increased with time except for 

SAVI.   Overall, all regression models were statistically 

significant (p<0.05) for the estimation of maize yield.  The 

highest accuracy of the models was NDVI at the late vegetative 

stage or CRSI at the reproductive and maturation stage.  
 

Table 1  Adjusted coefficients of determination (R2) and 

RMSE (kg/ha, in parentheses) in estimating yield with 

vegetation indices, NDVI, SAVI, TCARI, and CRSI, based on 

measurements during late vegetative (Jul 21), reproductive 

(Aug 30), and maturation (Oct 16) growth stages 

Vegetation Index Jul 21, 2017 Aug 30, 2017 Oct 16, 2017 

NDVI 0.826 (1414.0) 0.700 (1858.9) 0.677 (1929.1) 

SAVI 0.800 (1517.7) 0.572 (2219.7) 0.674 (1938.6) 

TCARI 0.787 (1566.7) 0.765 (1643.8) 0.312 (2815.6) 

CRSI 0.805 (1498.4) 0.773 (1618.0) 0.739 (1735.0) 
 

The yield to NDVI and CRSI relationships were also evaluated 

for all genotypes.  Table 2 shows again CRSI performed better 

than NDVI at the reproductive and maturation stage except for 

genotype G and genotype A on Aug 30.  Among genotypes, CRSI 

of genotypes B, D, E and F had higher R2 and smaller RMSE than 

the other genotypes, and were close to NDVI on Jul 21 and better 

than NDVI on Aug 30 and Oct 16.  

3.3  Other applications 

3.3.1  Drip line leaking detection 

Orthomosaics of another irrigation experimental field south of  

Table 2  Adjusted coefficients of determination (R2) and 

RMSE (kg/hm2, in parentheses) in estimating yield with 

vegetation indices, NDVI and CRSI for 8 maize genotypes A-H 

(N68B, N47L, N59B, N68K, G10D98, G12J11, N70M, G09H57, 

respectively) based on measurements during late vegetative 

(Jul 21), reproductive (Aug 30), and maturation (Oct 16) 

growth stages 

Genotype Drought-tolerant NDVI CRSI 

  Jul 21, 2017 

A N 0.737 (2471.7) 0.731 (2497.8) 

B N 0.936 (769.5) 0.895 (985.6) 

C Y 0.843 (1562.1) 0.802 (1753.9) 

D Y 0.934 (810.2) 0.954 (675.9) 

E N 0.937 (935.6) 0.937 (932.8) 

F Y 0.90 (1111.6) 0.878 (1213.0) 

G Y 0.507 (2004.1) 0.423 (2166.9) 

H N 0.845 (1290.5) 0.751 (1637.3) 

  Aug 30, 2017 

A N 0.604 (3032.7) 0.764 (2340.4) 

B N 0.821 (1289.12 0.925 (833.4) 

C Y 0.706 (2134.4) 0.783 (1832.7) 

D Y 0.894 (1028.4) 0.924 (868.2) 

E N 0.713 (1997.3) 0.807 (1639.0) 

F Y 0.900 (1107.6) 0.904 (1074.5) 

G Y 0.511 (1994.4) 0.470 (2076.7) 

H N 0.730 (1704.8) 0.731 (1702.2) 

  Oct 16, 2017 

A N 0.828 (1995.8) 0.791 (2201.9) 

B N 0.832 (1250.2) 0.874 (1083.2) 

C Y 0.488 (2815.7) 0.639 (2364.9) 

D Y 0.842 (1253.6) 0.890 (1046.0) 

E N 0.848 (1453.9) 0.907 (1136.0) 

F Y 0.792 (1580.9) 0.942 (838.1) 

G Y 0.397 (2215.5) 0.364 (2274.7) 

H N 0.417 (2506.9) 0.531 (2246.9) 
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the maize plot areas at LIRF were acquired during a post-irrigation 

leak test to determine if leaks of sub-surface drip lines could be 

spotted from UAS.  Figure 7 shows thermal (7.5 to 13.5 µm) and 

false-color red edge (or CRE is depicted with the 720 nm as Red, 

680 nm as Green, and 530 nm as Blue) imagery of leaks in buried 

drip lines.  The thermal image shows relative temperature changes 

and can highlight relative cold spots in the field.  Used alone, 

thermal imagery had difficulty detecting differences between 

irrigation leaks and vegetation unless the leak was large.  By 

adding a false color multispectral (red edge) image, differentiation 

between irrigation leaks and vegetation patches (in this case a weed 

patch) becomes more apparent.  Relative cold spots and lack of 

coloration due to vegetation combine to increase the likelihood of 

standing water or leak. 

Concerns: As stated, leaks in buried drip lines can be detected 

using thermal imagery.  However, to help differentiate between 

leaks and vegetation, it is beneficial to use a false color image in 

conjunction with thermal imagery.  Similarly, if the crop is at a 

later growth stage, differentiating between a leak and 

high-transpiration crop may prove to be difficult. 

 
Figure 7  Thermal (7.5-13.5 µm) and false color CRE (720 nm as Red, 680 nm as Green, and 530 nm as Blue) images taken by the  

UAS over an irrigation experimental field during a post-irrigation leak test on Jun 12, 2018 
 

3.3.2  Hail damage assessment 

Figure 8 shows false color infrared (or CIR is depicted with the 

860 nm as Red, 680 nm as Green, and 530 nm as Blue) UAS 

images over a fully irrigated maize plot before (left, taken on Sep 

10, 2019) and after (right, taken on Sep 13, 2019) a hail event that 

occurred in the late evening and early morning of Sep 10/11.  

Maize plants were in the R5 (kernel dent) growth stage.  

Comparing canopy cover before and after the hail event indicates a 

17.3% reduction of canopy vegetation.  The impact of hail 

damage on yield could be determined by missing vegetation (i.e., 

missing stands or reduced canopy), growth stage of the crop, and 

possible damage to cob.  For example, according to[37], the yield 

lost could range from 0-2%. 

Concerns: UAS can be used to calculate missing vegetation 

provided that pre- and post-hail event images were collected.  

Many canopy cover calculations evaluate for green pixels in the 

image, which could make differentiating between canopy and leaf 

litter difficult.  This problem can be mitigated by using 3D point 

cloud analysis to determine vegetation loss.  Assessing damage to 

cobs via UAS would be difficult. 

3.3.3  Nutrient deficiency assessment 

Figure 9 shows false color CIR, RGB and false color CRE 

orthomosaic of genotype by irrigation experiment exhibiting signs 

of chlorosis taken Aug 15, 2018.  Chlorosis, or yellowing of 

leaves due to lack of chlorophyll, can be a sign of nutrient deficiency. 

 
Figure 8  False color CIR images were taken by the UAS over a 

fully irrigated maize plot before (left) and after (right) a hail event 

on Sep 10, 2019 
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Chlorosis initially in younger leaves that spreads to older leaves is 

an indicator of iron deficiency, whereas the reverse can be an 

indicator of manganese, zinc, or nitrogen deficiencies.  Orthomosaics 

were created to determine plots that exhibit sign of chlorosis.  

Plots showing signs of chlorosis were re-flown at a lower altitude 

for high-resolution imagery; an example is shown in Figure 10.  

From the high-resolution imagery, it was determined that the 

younger leaves exhibited signs first, indicating an iron deficiency. 

Concerns: From Figure 9, plots affected by chlorosis in false 

color CIR imagery was not apparent in false color CRE or RGB 

images, indicating CIR imagery is a poor choice in determining 

chlorosis in plants.  Early detection of nutrient deficiencies is 

paramount to treatment.  Detecting chlorosis in older leaves first 

via aerial imagery in full canopy may prove difficult.   

 
Figure 9  False color CIR, RGB and false color CRE orthomosaics of genotype by irrigation experiment on Aug 15, 2018.   

Vegetation in false color imagery shows up in red.  Vegetation in Circled areas show plots showing signs of chlorosis.   

Note that in CIR image the plots showing signs of chlorosis is difficult to differentiate from healthy canopy 

 
Figure 10  High resolution RGB image of maize plot showing signs of chlorosis on Aug 15, 2018 
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4  Preflight and safety 

Planning is required prior to heading to the field site.  

Airspace class and proximity to airports of the proposed flight area 

must be checked.  When appropriate, permissions and/or 

notifications to use airspace must be secured/given prior to 

missions.  Waypoint missions of the study site are built 

beforehand to allow downtime between flights to be minimized and 

allow data collection to occur in optimum temporal windows (e.g., 

wind, solar incidence angle, crop water status).  Weather 

conditions and flight restriction of the proposed area should also be 

checked prior to flights to ensure conditions are favorable for 

flights, and that the area is clear of restrictions.  The flight team is 

comprised of 2 certified remote pilots, one acting as pilot in 

command/visual observer (PIC), the other acting as pilot at controls 

(PAC).  A third team member takes ground truthing measurement 

and intermittently acts as a second visual observer.  The PIC 

makes final decisions and is ultimately responsible for the flight.  

The PAC handles manual control of the UAV for the mission.  

The pilot’s roles are decided and assigned before flights occur.  

The visual observer monitors the sky for hazards and relays 

information to pilots. 

A preflight briefing and inspection of the UAV and flight 

equipment is performed by the PIC before every flight.  On-site 

weather conditions are monitored using Kestral 5500 weather meter 

(Kestrel Meters, Boothwyn, PA, USA) and air traffic is monitored 

using Yaesu FTA-550L Pro-x air band transceiver (Yaesu Musen 

Co., Ltd., Tokyo, Japan).  For this study, a maximum sustained 

windspeed of 13 mph (20.9 kph) and minimum visibility of 5 

statute miles (8.05 km) was set as the threshold for safe minimums.  

The UAV was powered-on with motors unarmed to warm up the 

FLIR camera for 25 minutes. 

5  Conclusions 

The paper reported that Agricultural Research Service Water 

Management and Systems Research Unit conducted research on 

using unmanned aerial systems (UAS) for irrigation and field 

management.  The results show use of UAS to be very promising 

for collecting high quality, high temporal and spatial resolution 

data, such as canopy cover, vegetation indices, and surface 

temperature, to estimate crop coefficient, crop water use, water 

stress, yield, as well as other crop, canopy, and field conditions.  

In the future, the research team will continue to develop reliable 

UAS-based remote sensing tools to improve water management in 

irrigated agriculture.   
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