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Abstract: Hyperspectral remote sensing technology improves the retrieval ability of chlorophyll content in crops.  The 
machine learning method has been developed and applied to crop phenotyping information inversion.  This study combined 
radiative transfer model (PROSPECT-4) and Gauss Process Regression algorithm (GPR) to retrieval crop leaf chlorophyll 
content.  The test was conducted in the eastern city of Shenyang, Liaoning Province, China with a japonica rice.  This paper 
describes (1) The PROSPECT-4 model was analyzed by GSA tool, and the sensitivity band range of crop chlorophyll was at 
400-750 nm.  (2) The chlorophyll content model was established with great accuracy (R2=0.8638) that can predict the crop leaf 
chlorophyll content; (3) The results demonstrated that crop chlorophyll is inversion by PROSPECT model and machine learning 
algorithm.  Therefore, crop chlorophyll content can be estimated by hyperspectral data that may be used for crop growth 
management.  This research can provide an efficient method to detect crop leaf chlorophyll content at the RTMS in the future. 
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1  Introduction  

Hyperspectral remote sensing is characterized by many bands 
and narrow band, which is a crucial technology for the 
development of precision agriculture[1]. Precision agriculture 
requires fine management of farmland, so remote sensing 
technology, including hyperspectral, thermal imaging and  
LiDAR systems, which provides technical support for the 
implementation of precision agriculture.  Methods using 
hyperspectral remote sensing technology are particularly 
promising as they allow for non-invasive, fast and automated 
measurements with both spatial and temporal resolution in the 
field.  They are based on transmittance, reflectance signals from 
the plants, which contain information about agronomic and 
physiological traits[2].  Having access to operationally acquired 
imaging spectroscopy data with hundreds of bands paves the path 
for a wide variety of monitoring applications, such as the 
biochemical vegetation properties[3].  In the process of crop 
growth, its canopy structure, physiological characteristics, 
environmental background and so on will change, resulting in 
changes in leaf and canopy spectrum.  It is based on crop 
differences in spectral response to monitor their growth.   

Such large number of data dimensions induces an important 
methodological challenge.  Hyperspectral remote image data 
include highly correlated and noisy spectral bands, and frequently 
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create statistical problems (e.g., the Hughes effect) due to small 
sample sizes compared to the large number of available, possibly 
redundant, spectral bands[4].  These characteristics may lead to a 
violation of basic assumptions behind statistical models or may 
affect the model outcome.  Models fitted with such multi-collinear 
data sets are prone to over-fitting, and transfer to other scenarios 
may thus be limited.  Naturally, these issues affect the prediction 
accuracy as well as the interpretability of the regression (retrieval) 
models[5].  Therefore, how to reduce the hyperspectral dimension 
and optimize the spectral, select the most suitable inversion of crop 
physiological information parameters, is the priorities of using the 
hyperspectral to carry out research. 

Chlorophyll is a class of photosynthesis related to the most 
important pigment. Photosynthesis is the process of converting 
light energy into chemical energy by synthesizing some organic 
compounds[6].  Chlorophyll absorbs energy from light, and t 
convert it into carbon dioxide to carbohydrates.  It is a key factor 
in regulating the biophysical and physiological processes of 
crops[7]. Estimating NDVI model of rice leaves based on NDVI 
and environmental data of rice canopy.  The results show that 
NDVI of rice leaves is highly correlated with canopy NDVI and 
multi-source environmental data[8].  Traditional methods of 
measuring chlorophyll in the laboratory, includes collecting crop 
leaf samples for chemical analysis, not only require destruction of 
the crop leaf samples but are also labor-intensive and expensive[9].  
Currently, remote sensing techniques have been proposed for 
monitoring the crop chlorophyll.  In recent years, the main 
method has been developed for remote estimation of chlorophyll 
status is empirical relationships between chlorophyll and 
vegetation indices (VIs).  Crop leaf has a strong absorption 
characteristic in the visible light red band, strongly reflects near 
infrared band, which is the vegetation remote sensing monitoring 
using satellite band detection data from a combination of can 
reflect the crop growth index[10].  Different vegetation 
combinations can be obtained by different combinations of these 
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two bands vegetation index.  Vegetation index was used to invert 
chlorophyll content mainly through statistical methods.  
Chappelle used a narrow band vegetation index to determine the 
content of chlorophyll of leaves[11,12].  Blackburn found a number 
of spectral indices for estimating pigment concentrations at the 
leaf scale.  The results indicate that the optimal wavebands for 
chlorophyll estimation are identified empirically at 680 nm and 
635 nm.  Two new indices (PSSR and PSND) that were 
developed had the strongest and most linear relations with 
chlorophyll concentrations[13].  However, there are still some 
problems in the retrieval of chlorophyll content using vegetation 
index, Including NDVI, PRI and Green Normalized Difference 
Vegetation Index (GNDVI) or other vegetation index are likely to 
be saturated during the inversion process of chlorophyll, resulting 
in a decrease of inversion accuracy.  The model established by 
using the vegetation index to invert the chlorophyll content of the 
crop is limited by the experimental conditions, the testing 
instrument and other factors.  

Another method of inverting chlorophyll is radiative transfer 
models (RTMs)[14,15].  Given spectra, find the closest spectra in 
the database and return the corresponding parameter.  Two main 
approaches: (i) Minimizes a function that calculates the RMSE 
between the measured and estimated quantities by successive input 
parameter iteration.  (ii) Precompute the model reflectance for a 
large range of combinations of parameter values, so the problem 
reduces to searching a LUT for the modeled reflectance that most 
resembles the measured one[16,17]. 

The objectives of this work are therefore threefold: (1) The 
global sensitivity analysis of the prospect model was carried out 
using the global sensitivity analysis tool to find the hyperspectral 
spectral range affected by chlorophyll; (2) To compare the 
accuracy of the chlorophyll inversion model established by 
different machine learning methods; (3) to establish hyperspectral 
inversion models for chlorophyll. 

2  Materials and methods 

2.1  Experimental data  
We choose the LOPEX`93 as the experimental database for 

this study.  LOPEX` 93 database including many crops 
biochemical information and leaf hyperspectral reflectance.  The 
band range from 400 nm to 2500 nm.  About 70 leaf samples 
representative of more than 50 species of woody and herbaceous 
plants in this database[18].  

The crop parameters measured by the LOPEX`93 database 
include N, chlorophyll, water, biomass, and other input parameters 
required by the PROSPECT model.  This database also including 
crop leaf high resolution visible and near infrared reflectance 
spectroscopy. 
2.2  Crop leaf radiative transfer model 

In this research we choice PROSPECT model for inversion of 
crop chlorophyll.  PROSPECT is a radiative transfer model based 
on Allen`s generalized “plate model” that represents the optical 
properties of plant leaves from 400 nm to 2500 nm Scattering is 
described by a spectral refractive index (n) and a parameter 
characterizing the leaf mesophyll structure (N).  Absorption is 
modeled using pigment concentration (Ca+b), water content (Cw), 
and the corresponding specific spectral absorption coefficients 
(Ka+b and Kw).  The parameters n, Ka+b, and Kw have been fitted
（using experimental data corresponding to a wide range of plant 

types and status.  PROSPECT has been tested successfully on 
independent data sets.  Its inversion allows one to reconstruct, 
with reasonable accuracy, leaf reflectance, and transmittance 
features in the 400-2500 nm range by adjusting the three input 
variables N, Ca + b, and Cw 

[19]. 
The principle of the model is as follows: The interaction of 

electromagnetic radiation with plant leaves (reflection, 
transmission, absorption) is dependent on the chemical and 
physical properties of the leaves[20].  In the visible light band, 
the light absorption is essentially formed by the rotation and 
movement of electrons in chlorophyll a, chlorophyll b and other 
pigments; in the near-infrared and mid-infrared bands, it is mainly 
formed by the vibration and rotation of electrons in water[21].  
Refractive index n is not continuous in the blade, n = 1.4 for 
water-containing cell walls, n = 1.33 for water and n = 1 for air, so 
the internal biochemical composition and structural properties of 
the whole spectrum the leaf reflectivity and transmittance of the 
band[22]. 
2.3  Hyperspectral remote sensing data Global Sensitivity 
Analysis(GSA) 

An important requirement is to know the key input variables 
driving the spectral output in a specific spectral region.  Such 
knowledge can lead to a simplified model that is driven only by the 
key variables, which makes exploration of a broad range of target 
and observation conditions easier and more effective[23].  To 
achieve this, GSA is required.  The global sensitivity analysis is 
performed over the entire parameter range, and the effect of 
coupling between different parameters on the output of the model is 
considered, which is very suitable for the sensitivity analysis of 
complex nonlinear models[24]. 

The most popular global sensitivity analysis method is Sobol 
algorithm[25].  This work the variance-based sensitivity measures 
was used.  The algorithm are represented as follows: 
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indices.  Where Si and represent the first order sensitivity index, 
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GSA useful to identify RTM key and non-influential 
variables[26]. 
2.4  Gaussian processes regression 

Traditional data modeling methods commonly used in the 
process are Estimation, regression and function approximation.  
With the continuous improvement of computer computing ability, 
the current research on machine learning has become a trend.  
Such as the Gaussian Processes regression (GPR)[27,28], in which 
we will focus here. 

GPR can be transformed into a linear relation by mapping the 
data of non-linear relation to the characteristic space by the way of 
nucleus substitution, so that the complex nonlinear problem can be 
transformed into a linear problem.  A key step in the use of GPR 
modeling is to determine the kernel function.  Gaussian processes 
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can choose different types of kernel functions.  Each kernel 
function has different structures, and its ability to describe data is 
different.  The nature of GPR model is also determined by its 
kernel function[29].  The kernel functions of the GPR model 
include the mean kernel function and the covariance kernel 
function.  The mean function m(x;Φ) can be used to denote the 
mathematical expectation of the function y(x) for which x is input 
without observations.  In general, Take m(x; Φ) = 0, the zero 
mean function, which means that the initial output of the function 
under any input data is ideally zero.  It is also possible to assume 
that the mean function is a constant that is not zero, and that this 
constant constitutes a super parameter with respect to the prior 
probability.  The covariance function K(x1, x2; Φ) is the center of 
the stochastic output variable corresponding to two stochastic input 
points in space.  It is a key factor to measure the similarity or 
correlation degree between different samples, which is the key 
factor influencing the prediction effect of GPR model.  
Commonly used covariance kernel functions include Squared 
exponential covariance function (SE), Matem covariance function, 
Rational square covariance function (RQ), Periodic covariance 
function (PER).  We use the SE kernel function in this work: 
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where, σ is output size parameters; l is length scale parameter; xi 
and xj are the input spectrum.  If xi ≈xj, then k(xi, xj) takes the 
maximum, which indicates that the two functions are close.  If the 
difference between xi and xj gradually become larger, k(xi, xj) 
approaching zero, which means that two points farther and farther 

apart, at this time 2l  determines its distance from far and near 

effect.  Hence, low values of 2l  indicate a higher informative 
content of this certain per input bands to the training function k.  

This 2l  property shall be further exploited in this paper.  
2.5  ARTMO tools 

The automated radiative transfer models operator (ARTMO) 
graphic user interface (GUI) is a software package that provides 
essential tools for running and inverting a suite of plant RTMs, 
both at the leaf and at the canopy level.  ARTMO facilitates 

consistent and intuitive user interaction, thereby streamlining 
model setup, running, storing and spectra output plotting for any 
kind of optical sensor operating in the visible, near-infrared and 
shortwave infrared range (400-2500 nm)[30].  

3  Results and discussion 

3.1  GSA reflectance results 
Sobol’s First order sensitivity index (SFi) and Total order 

sensitivity index (STi) results on surface reflectance across the 
400-2400 nm region are given in Figure 1.  The PROSPECT-4 
model has four input variables, include leaf structural parameter 
(N), leaf chlorophyll content (Cab), leaf equivalent water thickness 
(EWT) and leaf dry matter content (DW).  The GSA results 
revealed that four input variables drive the PROSPECT-4 
reflectance.   

The leaf chlorophyll a+b content (Cab) only governed over 
70% of variation in reflectance at wavelengths in the range of   
400 nm to 750 nm.  In this band range, the leaf structural 
parameter (N) governed less than 20% of variation in reflectance, 
and leaf dry matter content (DW) governed less than 10% of 
variation in reflectance.  As shown in Figure 1, moisture has no 
sensitive band in 400-750 nm.  Apart from EWT, spectral 
features in the visible part were controlled primarily by Cab, N 
and DW.  The 400-750 nm spectral window is the 
photosynthetically active radiation for plants with Cab as the main 
absorbing pigment.  

Figure 2 shows the dominant range of chlorophyll band, from 
the figure can be seen, to use spectral information inversion of crop 
chlorophyll content, only need to use 400-750 nm to carry out 
research, do not need to 400-2500 nm all Bands are used for 
modeling, reducing the dimensionality of the data.  
3.2  GPR results 

Figure 3 shows the comparison of predicted and measured 
values of chlorophyll inversion using GPR.  Regarding 
chlorophyll retrieval with GPR, the R2 = 0.8638, RMSE = 0.9435.  
It can be seen from the values of R2 and RMSE that it is ideal to 
use the prospect model to retrieve the chlorophyll content using the 
method of GPR. 

 

 
Figure 1  GSA Total sensitivity index (STi) for PROSPECT4 model reflectance 
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Figure 2  Chlorophyll a+b mainly affects the band range 

 

 
Figure 3  GPR result measured vs established 

 

3.3  Discussion 
This study analyzed the global sensitivity of the PROSPECT-4 

model to find the chlorophyll sensitive bands for establish 
inversion model.  The chlorophyll inversion model was 
established by GPR method using Lope’ 93 leaf biological 
parameters and hyperspectral datasets.  It can be seen from the 
results that the inversion precision of this study is ideal, which is 
mainly due to the use of radiative transfer model to link spectral 
information and crop information, and not the vegetation index as 
the inversion parameter, which improves the accuracy of the model.  
The PROSPECT-4 model used in this study did not include other 
pigment parameters except chlorophyll, which would have some 
influence on the accuracy of the model.  The sensitivity of 
chlorophyll in crops was 400 nm to 750 nm.  Although 
chlorophyll was the main parameter affecting the spectral 
information in this region, other crop parameters also affected the 
range of this spectral range.  The impact of other crop information 
was not explored in this study. 

The data set used in this study is the LOPEX database, which 
contains crop information and hyperspectral information, and the 
variety of crops is very generous, is used to explore the crop 
parameter inversion model of a better database.   

The inversion method used in this study is limited by the 
radiative transfer mechanism model.  Only the crop parameters 
belong to the radiative transfer mechanism model.  Therefore, 
how to establish a radiation transport model that can be used to 

retrieve crop parameters is the key to improve the accuracy of 
inversion. 

Beyond the here presented remote sensing vegetation products, 
it would be interesting to apply GPR and RTM to spectral-variable 
datasets that include more plant properties, such as leaf nitrogen 
content, biomass.  

4  Conclusions  

In this study, the LOPEX`93 database was used to combine 
crop information and hyperspectral information of the modified 
dataset to establish a hyperspectral information inversion model of 
crop chlorophyll content through PROSPECT-4 model and GPR 
method.  The main contributions of this research are as follows:  
(1) The PROSPECT-4 model was analyzed by GSA tool, and the 
sensitivity band range of crop chlorophyll was at 400-750 nm.  (2) 
the chlorophyll content model was established with great accuracy 
(R2=0.8638) that can predict the crop leaf chlorophyll content;   
(3) The results demonstrated that crop chlorophyll is inversion by 
PROSPECT model and machine learning algorithm.  Therefore, 
crop chlorophyll content can be estimated by hyperspectral data 
that may be used for crop growth management. 
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