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Abstract: With the deepening research on the rotor wind field of UAV operation, it has become a mainstream to quantify the 
UAV operation effect and study the distribution law of rotor wind field via the spatial parameters of the UAV-rice interaction 
wind field vortex.  At present, the point cloud segmentation algorithms involved in most wind field vortex spatial parameter 
extraction methods cannot adapt to the instantaneous changes and indistinct boundary of the vortex.  As a result, there are 
problems such as inaccurate three-dimensional (3D) shape and boundary contour of the wind field vortex as well as large errors 
in the vortex’s spatial parameters.  To this end, this paper proposes an accurate method for establishing the UAV-rice 
interaction vortex 3D model and extracting vortex spatial parameters.  Firstly, the original point cloud data of the wind filed 
vortex were collected in the image acquisition area.  Secondly, DDC-UL processed the original point cloud data to develop the 
3D point cloud image of the wind field vortex.  Thirdly, the 3D curved surface was reconstructed and spatial parameters were 
then extracted.  Finally, the volume parameters and top surface area parameters of the UAV-rice interaction vortex were 
calculated and analyzed.  The results show that the error rate of the 3D model of the UAV-rice interaction wind field vortex 
developed by the proposed method is kept within 2%, which is at least 13 percentage points lower than that of algorithms like 
PointNet.  The average error rates of the volume parameters and the top surface area parameters extracted by the proposed 
method are 1.4% and 4.12%, respectively.  This method provides 3D data for studying the mechanism of rotor wind field in 
the crop canopy through the 3D vortex model and its spatial parameters. 
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1  Introduction  

In recent years, more and more scholars at home and abroad 
have devoted themselves to the study of precision agriculture 
aviation.  The intelligence and informatization of agricultural 
UAV has become an international trend[1-4].  As an important 
factor affecting agricultural UAV operations, the rotor wind field 
characterized by instantaneous changes has drawn wide 
attention[5-9].  Li Jiyu et al. studied the distribution law of the 
canopy wind field of the rotor UAV by integrating the wind speed 
parameter acquisition system and the Beidou Positioning System[10].  
In 2017, Li Jiyu et al. proposed a new physical form of UAV-rice 
interaction vortex to represent the distribution law of rotor wind 
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field in the crop canopy and built an ideal matching model for it by 
collecting the wind speed in the vertical direction of the canopy[11].  
The above research shows that when the UAV in operation, 
UAV-rice interaction vortex of an inverted cone shape is formed 
under the interaction between the rotor wind field and the rice 
canopy.  3D parameters of the vortex are essential for studying not 
only the mechanism of rotor wind field in the crop canopy but also 
the UAV’s parameters like its working range and intensity.  
However, most available point cloud segmentation algorithms 
cannot adapt to the instantaneous changes and indistinct boundary 
of the vortex, which causes inaccurate 3D shape and boundary 
contour of the wind field vortex as well as large errors of spatial 
parameters. 

With the development of deep learning in artificial intelligence, 
semantic segmentation algorithm has been widely used in 3D point 
cloud segmentation.  Qin et al. proposed the framework of TLFnet 
and applied multi-view convolutional neural network (CNN) to 
large-scale point cloud segmentation by using airborne laser 
scanning for terrain scene classification[12].  Boulch et al. presented 
the approach of Snapnet and performed point cloud segmentation 
by integrating RGB-D with point cloud and utilizing the fusion 
strategy[13].  Zhang’s research team advocated the joint task-recursive 
learning framework of TRL which recursively optimized the results 
of closed-loop semantic segmentation and monocular depth 
estimation through serialized task-level interaction[14].  Wu et al. 
introduced the framework of SqueezeSeg which transformed point 
cloud coordinates into tensors through two-dimensional (2D) 
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spherical projection, produced classification label of each point in 
conditional random field and segmented the road objects based on 
Multispectral LiDAR point cloud data in the process of 
autonomous driving[15].  The method of projection and view was 
utilized for point cloud segmentation in these studies and it realized 
3D semantic segmentation on the basis of 2D deep learning.  But 
in view of segmenting the UAV-rice interaction vortex, this method 
was not applicable because of its high precision error (over 18%) 
and slow segmentation speed (over 15 frames per second).  

The promotion of CNN from 2D to 3D contributes to the 
application of the deep voxel network to point cloud segmentation.  
Maturana and Scherer proposed the VoxNet that fulfilled simple 
classification tasks through two convolutional layers, one pooling 
layer and two fully connected layers[16].  Chang et al. came up 
with a large shape library with abundant annotations called 
ShapeNet.  ShapeNet realized data visualization of the object 
attributes by collecting 3D models under multiple semantic 
categories and providing semantic annotations for each model.  
Chang’s study promoted data-driven geometric analysis and 
provided a large-scale quantitative benchmark for the exploration 
of computer graphics and computer vision[17].  Huang et al. 
introduced a 3D point cloud labeling scheme based on 3D CNN to 
minimize the interference of prior knowledge of the labeling[18].  
Tchapmi et al. advocated the framework of SEGCloud, which 
applied 3D fully convolutional network to point cloud 
segmentation by voxel, downsampling and trilinear interpolation 
analysis of 3D point cloud[19].  The voxel-based point cloud 
segmentation algorithms mentioned above fully retain the point 
cloud information and significantly reproduce the target features 
because they do not reduce dimensionality of the point cloud data, 
but such algorithms are so complicated in operation and demanding 
in storage that they are not applicable to the UAV-rice interaction 
vortex of instantaneous changes. 

It is acknowledged that the more complex the segmentation 
scene is, the more accurate and robust the point cloud segmentation 
algorithm should be.  In 2017, Charles et al. put forward a new 
type of depth network architecture PointNet where original point 
cloud data were directly input requiring no transformation.  The 
point cloud and features were aligned via two T-net transformation 
networks, while features were extracted by two multilayer perceptron 
(MLP) and point cloud was segmented through one pooling layer.  
As a result, problems like point cloud original data disorder and 
geometric rotation were solved[20].  On the basis of PointNet, Qi et 
al. introduced CNN to PointNet and extracted local features by 
processing a group of points sampled from the metric space in a 
hierarchical manner so as to capture the fine geometric structures of 
small neighborhoods[21].  These studies concern disordered point 
cloud segmentation.  They perform end-to-end operation without 
introducing other point cloud processing algorithms halfway, and 
reduce the complexity of point cloud segmentation algorithm.  
Such algorithms can extract the global features of point cloud, but 
they are not applicable to the UAV-rice interaction vortex that are 
characterized by significant boundary changes. 

To cope with point cloud disorder and to reproduce features to 
the maximum degree, researchers have proposed segmentation 
algorithms based on ordered point cloud.  The earliest ordered 
point cloud segmentation algorithm is OctNet.  By using sparsity 
in the input data, this algorithm uses a set of unbalanced octree to 
divide the space into layers, puts memory allocation and 
computation into relevant dense regions, and develops a deeper 
network without affecting the resolution[22].  Klokov et al. 

proposed KD-network, a feedforward neural network, which 
studied the parameters associated with the node weight in KD-tree 
by using KD-tree structure to index point cloud[23].  Su et al. 
advocated the SplatNet, which realized complete end-to-end 
processing by constructing the network structure through bilateral 
convolutional layer without additional data processing[24].  It is 
found that segmentation algorithms based on ordered point cloud 
feature high accuracy, solve end-to-end problems and reduce 
additional performance overhead.  However, these algorithms 
cannot meet the needs of field operation because their structures are 
too complex and the sorting processes are time-consuming. 

Nowadays, 3D point cloud segmentation algorithms are able to 
meet the automation requirements of emerging technologies such 
as the autopilot, UAV, and robot navigation.  But in view of 
segmenting the UAV-rice interaction vortex, the application of the 
above-mentioned algorithms causes problems such as inaccurate 
3D shape and boundary contour of the wind field vortex, and large 
errors in the vortex’s spatial parameters. Therefore, this paper 
proposes a method for establishing the UAV-rice interaction wind 
field vortex 3D model and extracting vortex spatial parameters.  
This method provides 3D data for studying the mechanism of rotor 
wind field in the crop canopy by extracting the vortex’s 3D 
physical parameters.  

2  Materials and methods 

2.1  Materials and experiment site 
This experiment was conducted in a rice research field of 

Guangdong Academy of Agricultural Sciences located in 
Zhongluotan Town, Baiyun District, Guangzhou, Guangdong, 
China (23°23'47.98"N, 113°26'11.79"E).  At the time of the 
experiment, the rice was in the flowering stage and the height of 
rice canopy was 1.02m. 

The EFT 10 kg Plant Protection UAV (Figure 1a) was utilized 
to simulate field spraying operation.  NVIDIA ® Jetson™ TX2 
supercomputer module with ZED 2K Stereo Camera served as the 
image acquisition device (Figure 1b) to collect the left and right 
images of the wind field vortex generated under the interaction 
between rotor wind field and rice canopy.  
 

 
a. UAV 

 

  
b. The image acquisition device 

Figure 1  Physical drawing and structure diagram of UAV and 
image acquisition device 



58   June, 2020                         Int J Precis Agric Aviat      Open Access at https://www.ijpaa.org                          Vol. 3 No. 2 

2.2  Basic data 
2.2.1  UAV airframe and flight parameters 

The airframe and flight parameters of the EFT 10 kg Plant 
Protection UAV are shown in Table 1. 
 

Table 1  Airframe parameters and flight parameters of UAV  
Airframe parameters Flight parameters 

Takeoff 
weight 

/kg 

Main rotor 
diameter 

/m 

Rotor  
span 
/m 

Rotational 
speed 
/rpm 

Flight height (m)
distance above the 

canopy 

Flight
speed
/m·s-1

15 0.75 1.2 1350 1.7-1.9 0-0.14
 

The EFT 10 kg Plant Protection UAV used in this experiment 
is medium-sized with a rotor diameter of 750 mm, a rotor span of 
1.2 m and a total takeoff weight of 15 kg.  The UAV hovered over 
the image acquisition area at the height of 1.8 m above the canopy 
during the experiment.   
2.2.2  Image acquisition device 

Figure 1b shows the composition of the image acquisition 
device and Table 2 presents its basic parameters. 

 

Table 2  Basic parameters of image acquisition device 

CPU GPU Memory bank/spase

NVIDIA 
JETSON TX2 

parameters 

Dual core Denver 
2 64-bit CPU and 
quad-core ARM 
A57 Complex 

NVIDIA Pascal™ 
architecture with  

256 NVIDIA CUDA 
cores 

8GB LPDDR4/32 GB 
EMMC 5.1 

Frame rate/fps Resolution ratio Depth range/m ZED 2K 
Stereo Camera 

parameters 15 4416*1242 0.2-20 

Height of total 
installation/cm 

Height of lifting and 
shrinking rod/cm 

Height of the ZED 
stereo camera above 

the canopy/cm 
Device 

parameters 

453 0~273 68 
 

2.2.3  Experiment Parameters 
In the experiment, the UAV-rice interaction vortex image 

acquisition device and the UAV operated as Figure 2 shows. 

 
Figure 2  UAV-rice interaction wind field vortex image 

acquisition experiment example 
 

In this experiment, the rice field ridge was 4 meter wide.  To 
ensure the integrity of the UAV-rice interaction vortex and the 
accuracy of its parameters, the UAV hovered over the image 
acquisition area with a distance ratio of 1:3 between the UAV and 
the neighboring field ridge on both sides.  The image acquisition 
device was set on the plain beside the field and 3.5 m away from 
the UAV.  The image acquisition area was 2.5~6.5 m (D) *–2.5~ 
2.5 m (V) *–4~4 m (H) (the image acquisition device as the origin). 
2.3  Technical method 

The acquisition process of the UAV-rice interaction vortex 
spatial parameters is illustrated in Figure 3. 

Firstly, the image acquisition device collected the left and right 
images of the UAV-rice interaction vortex, and then the 3D point 

cloud data set of the image acquisition area was obtained from the 
parameters of ZED 2K Stereo Camera and the depth processing 
algorithm.  Secondly, DDC-UL point cloud segmentation 
algorithm was used to process the original 3D point cloud data set 
of the UAV-rice interaction vortex and reconstruct the 3D curved 
surface model.  Finally, the 3D spatial parameters of the 
UAV-rice interaction vortex were extracted through the 
infinitesimal method. 

 
Figure 3  Acquisition process of the UAV-rice interaction vortex 

spatial parameters 
 

2.3.1  Point cloud acquisition 
The image acquisition device was used to collect the left and 

right images of the image acquisition area (Figure 4a and Figure 4b) 
and to match all the pixel points so as to obtain the pixel coordinate 
point sets corresponding to p1 (X1, Y1) and p2 (X2, Y2).  Assuming 
that the left camera of the ZED 2K Stereo Camera (marked as 
O-xyz) was located at the origin of the world coordinate system 
with no rotation, the 3D point set in the image acquisition area 
(Figure 4c) was obtained through Function (1) based on the valid 
focal distance between the left and right cameras together with the 
rotation and translation matrix.  The obtained 3D pixel point set of 
the image acquisition area contained not only all the points of the 
UAV-rice interaction vortex, but also some invalid points and 
wrong points with no depth information. 

 

   

 (1)

 
where, Fl and Fr refer to the valid focal distance of the left and right 
cameras.  xi, yi, and zi are 3D points set in the world coordinate.  
Ol-XlYl and Or-XrYr respectively stand for the left and right camera 

image coordinate system, and 
1 2 3

4 5 6

 7 8 9

         
         
        

x

y

z

r r r t
r r r t
r r r t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

is the rotation and 

translation matrix of the ZED 2K Stereo Camera. 
2.3.2  Point cloud segmentation 

Figure 5 shows the network structure of DDC-UL point cloud 
segmentation algorithm. 
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a. Left image b. Right image c. 3D point cloud image of image acquisition area 

 

Figure 4  Left and right images of the image acquisition area and the 3D point cloud image of the image acquisition area 

 
Figure 5  Network structure of DDC-UL point cloud segmentation algorithm 

 

2.3.2.1  VR - Net transformation 
In response to problems of invalid points, wrong points, and 

rotation error, VR-Net was introduced to the front-end of DDC-UL 
point cloud segmentation algorithm.  The actual effect of VR-Net 
is shown in Figure 6.  The 3D point cloud data of the image 

acquisition area obtained from Section 2.3.1 were then synthetized 
into voxel.  Voxel refers to the 3D grid of same-sized cubes in 
which every point is represented by its center of gravity.  Then the 
voxel was rotated and transformed to eliminate the error caused by 
point cloud rotation in the process of segmentation. 

 
Figure 6  VR-Net transformation 

 

2.3.2.2  Feature extraction 
3D point cloud data in the image acquisition area (n*3) were 

input to DDC-UL to extract the eigenvalues of density, distance, 
and curvature of each point in the point set. 

Function (2) is the density feature solution, the core of which 
lies in the computation of 3D point spacing and the distance 
threshold. 

[ ( . ) ] [ , (1,2,... )]si d i j d i j Nρ α= ∑ − ∈           (2) 
where, d(i,j) represents the point spacing and ds stands for the 
distance threshold.  ρi refers to the voxel density and α(x) is the 
symbolic function.        

Function (3) is the distance feature solution, the core of which 
is the solution of density feature. 

max( )[ ( , )]
min( : )[ ( , )]i

i j

j d i j
j d i j

δ
ρ ρ

⎧
= ⎨ >⎩

            (3) 

where, d(i,j) is the Voxel spacing and ρi is the Voxel density. 
Function (4) is the curvature feature solution, the core of which  

includes the velocity scalar, acceleration scalar, velocity vector and 
acceleration vector. 

2* 2 2 3| | | | ( * ) / | |k v a v a v= −             (4)  
where, |v|, |a|

 
and v*a respectively refer to the Velocity scalar, the 

acceleration scalar, and the velocity vector multiplied by the 
acceleration vector, which are obtained by differentiating the 
curved surface fitting function of the 3D point cloud in the image 
acquisition area. 
2.3.2.3  Network segmentation 

After feature extraction as Section 2.3.2.2 describes, each point 
in the 3D point set of the image acquisition area was given a 3D 
spatial coordinate and a 3D feature vector.  The points with the 
largest eigenvalues in each point cluster were taken as the category 
points and then randomly labeled to make up different 
segmentation categories.  The category points served as the center 
of each segmentation cluster, while the points in the non-central 
parts were sorted into its nearest category.  Finally, the 3D point 
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set in the image acquisition area underwent feature removal 
through the fully connected layer, and was segmented according to 
categories to produce the original point cloud data of the UAV-rice 
interaction vortex (Figure 7). 

 
Figure 7  Original point cloud image of UAV-rice interaction vortex 

\ 

2.3.3  Curved surface reconstruction 
The diagram of reconstructing the point cloud curved surface 

by means of Delaunay is shown in Figure 8. 
The original point cloud data obtained from Section 2.3.2 were 

placed in the 3D space, where a sufficiently large tetrahedron and 
its circumscribed sphere were constructed and then put into the 
Delaunay chain list.  The tetrahedron contained all the points in 
the original point set of the wind field vortex.  The points in the 
point set were then inserted into the Delaunay chain list one by one 
and each inserted point stuck to the following this pattern: 1) the 
tetrahedron whose circumscribed sphere contained the inserted 
point was identified; 2) the shared sides adjacent to the tetrahedron 
were deleted; 3) the inserted point was connected with all vertices 
of the tetrahedron.  The above pattern was repeated until all points 
in the 3D wind field vortex were inserted.  The initial tetrahedron 
was then deleted to get the 3D curve of the UAV-rice interaction 
vortex, from which the 3D curved surface was developed through 
three boundary surface. 

Figure 9 presents the reconstruction of the point cloud curved 
surface through Delaunay. 

 
Figure 8  Point cloud surface reconstruction via Delaunay 

 

 
Figure 9  Reconstruction of the point cloud surface through 

Delaunay 

 

2.3.4  Spatial parameter solution 
2.3.4.1  Volume parameter solution 

As shown in Figure 10, the floor of the 3D model obtained in 
Section 2.3.3 was divided into grids.  After calculating the area of 
every single grid and the 3D curved surface depth in each grid, the 
volume of the cuboid corresponding to every grid was calculated 
and accumulated to get the volume parameters of UAV-rice 
interaction vortex.  Function (5) shows the volume solution. 

( )wV S D= ∑ ×                    (5) 
where, Sw is the single grid area and D refers to the 3D curved 
surface depth in each grid.  Sw×D represents the volume of the 
cuboid corresponding to every grid. 

 
Figure 10  Schematic diagram of volume parameter calculation of 

UAV-rice interaction vortex 
 

2.3.4.2  Top surface area parameter solution 
As Figure 11 shows, a central point is selected on the unsealed 

top surface in the UAV-rice interaction vortex 3D model, and some 
edge points with identical angular spacing on its surface contour 
are also selected.  The unsealed top surface is divided into sectors 
with different radii by the lines connecting these edge points and 
the center.  The area of each sector is calculated and accumulated 
to get the area parameters of the vortex’s unsealed top surface.  
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Function (6) illustrates the solution for the unsealed top surface 
area. 

2

360i
nS Rπ °

= ∑ × ×
°

               (6) 

where, Ri is the radius of each sector, and 2

360i
nRπ °

× ×
°

 

calculates the area of each sector. 

 
Figure 11  Schematic diagram of the calculation of the UAV-rice 

interaction vortex 3D model unsealed top surface 

3  Results and discussion 

In order to verify whether the method proposed in this paper 
could accurately establish the UAV-rice interaction wind field 
vortex 3D model and extract the spatial parameters, a two-level 
accuracy test and analysis were conducted based on the 3D point 
cloud data from Section 2.3.1.  For level one, dynamic 3D vortex 
models extracted by various algorithms were compared with the 
static 3D vortex model extracted by the manual method.  It was 
proved that the proposed method could best reproduce the 3D 
shape and boundary contour of the vortex.  For level two, the 
dynamic vortex spatial parameters extracted by the proposed 
method were then compared with the static parameters extracted by 

the manual method.  It was confirmed that the proposed method 
contributed to more accurate vortex spatial parameters. 

The static UAV-rice interaction vortex refers to the wind field 
vortex formed at the last moment of the experiment when the rice 
remains lodging and bending for a short period even after the UAV 
returns to the starting point.  Although the static wind field vortex 
could not show the instantaneous changes of the dynamic vortex, it 
displayed the characteristics of the 3D shape and boundary contour 
of the dynamic vortex, so it could be used as the standard for 
analyzing the accuracy of the vortex’s 3D shape and boundary 
contour. 
3.1  Accuracy analysis of 3D shape and boundary contour of 
UAV-rice interaction vortex 
3.1.1  Result 

During the experiment, the UAV hovered over the image 
acquisition area for 2 minutes.  The original point cloud data of 
the image acquisition area were collected and separately processed 
by PointNet, Snapnet, KD-Network and DDC-UL to develop 
corresponding 3D models of the dynamic vortex and its three views, 
as they are respectively shown in Figure 12c, Figure 12d, Figure 
12e, and Figure 12b.  At the end of the experiment, in order to 
build the static vortex 3D model and capture its three views, the 
researcher took the Beidou Differential Positioning System into the 
field, and collected the feature points and boundary points of the 
static vortex as Figure 12a shows.  

The comparison of the static results and the dynamic ones 
contributed to the area ratio and error rate of the three views 
between  the manual method and various algorithms (Table 3).  
The accuracy of the 3D shape and boundary contour extracted by 
different algorithms was studied by using Function (7) to calculate 
the quantization area ratio. 

Algorithm

Manual

SP
S

=                     (7) 

where, P is the area quantization ratio, and SAlgorithm/Sartificial refers 
to the process of dividing the three views area extracted via 
algorithm by that extracted through manual method.  

 

Table 3  Area quantization ratio and its error rate of each methods 

3D Configuration Boundary contour 
Point Cloud 

segmentation 
algorithm 

Main view  
area 
/m2 

Area quantization  
ratio of 

main view (Pm) 

Left view 
area 
/m2 

Area quantization 
ratio of 

left view (P1) 

3D 
error rate 

(Qtd) 

Top view 
area 

/m2 

Area Quantization 
ratio of top view 

(Pt) 

Boundary contour
error rate 

(Qmp) 

Manual extraction 0.590933 1 0.514720 1 0% 3.286531 1 0% 

DDC-UL 0.606573 1.0264 0.512481 0.9956 1.540% 3.246582 0.9878 1.22% 

PointNet 0.626364 1.0599 0.510026 0.9908 3.455% 2.795807 0.8506 14.94% 

Snapnet 0.742321 1.2561 0.589081 1.1444 20.025% 3.888477 1.1831 18.31% 

KD-Network 0.492552 0.7935 0.562203 1.1122 15.935% 2.818809 0.8576 14.24% 

 

 
Three - dimensional model The front view The left view  The top view 

 

Figure 12a  3D model and three views of UAV-rice interaction vortex extracted manually 
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Three - dimensional model The front view The left view  The top view 

 

Figure 12b  3D model and three views of UAV-rice interaction vortex extracted by DDC-UL 

 
Three - dimensional model The front view The left view  The top view 

 

Figure 12c  3D model and three views of UAV-rice interaction vortex extracted by PointNet 

 
Three - dimensional model The front view The left view  The top view 

 

Figure 12d  3D model and three views of UAV-rice interaction vortex extracted by SnapNet 

 
Three - dimensional model The front view The left view  The top view 

 

Figure 12e  3D model and three views of UAV-rice interaction vortex extracted by KD-Network 
 

3.1.2  Data analysis 
PointNet algorithm (Function (8)) integrated with T-net, MLP, 

and Maxpooling to extract 1024 dimensional eigenvector of the 
vortex point cloud, from which a 3D model of the UAV-rice 
interaction vortex was built.  The 3D model (Figure 12c) retained 
the concave-convex details of its 3D curved surface with an error 
rate of less than 5%.  However, limited by its learning capacity, 
PointNet was not applicable to objects with uncertain shape and 
indistinct features.  As a result, in the process of extracting the 
vortex boundary, over-fitting occurred with an error rate over 14%, 
causing remarkable difference between the model’s top contour and 
the actual vortex.   

f({x1, ....., xn})=g(h(x1)......., h(xn))          (8) 
where, f(x) stands for Segmentation function; g(h(x)) refers to the 
max pooling function and h(xi) is the feature extraction function. 

Snapnet adopted Function (9) to obtain the RGB-D image of 
the wind field vortex and performed pixel-level marking on 2D 
snapshots.  Different architectures were tested for the rapid back 
projection of tag prediction in the 3D space, and the UAV-rice 
interaction vortex was segmented by identifying tags.  The 3D 
wind field vortex model (Figure 12d) could not reproduce the 
concave-convex details and boundary contour features of the 
vortex’s 3D curved surface because no comparable RGB pattern 
was found between the inner vortex and the outer vortex.  The 
error rate of this 3D shape was as high as 20%, while the error rate 
of the boundary contour reached 18.31%, indicating that the normal 
morphological features of the vortex has been distorted in the 3D 
model. 

*
R T

B FD
X X

=
−

                  (9) 
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where, D, B, and F represents the point cloud depth, binocular 
camera baseline, and binocular camera focal distance, respectively;  
XR and XT refer to left and right camera field of view. 

In KD-Network, a KD tree was constructed based on the 3D 
point cloud of the wind field vortex, while the node feature vector 
vi was calculated through Function (10) and learning parameters 
Wli

di and bli
di were trained.  Segmenting the features through the 

integration of Encoder-Decoder and Skip Connection resulted in 
the 3D model of UAV-rice vortex (Figure 12e).  Similar to 
PointNet, because of its limited learning capacity and sensitiveness 
to interference like rotation and noise, KD-Network was not 
applicable to objects with unfixed shape and indistinct 
characteristics.  Furthermore, the 3D model developed through 
this algorithm could not fully reproduce the 3D concave-convex 
details and boundary contour features with a 3D shape error and 
boundary contour error rate both over 14%.  Therefore, this 
algorithm was not capable of constructing an accurate 3D model of 
the wind field vortex.  

Vi =ϕ(Wli
di[vc1(i); vc2(i)]+bli

di)             (10) 
where, ϕ( ) is nonlinear element; Wli

di and bli
di are learning 

parameters; vc1(i) and vc2(i) are child node feature vectors. 
Compared with the above three point cloud segmentation 

algorithms, DDC-UL based itself on the global features and better 
presented the details of the vortex curved surface.  DDC-UL’s 
error rate of the 3D vortex shape was kept within 2%, which was 
18 and 14 percentage points lower than that of Snapnet (20.025%) 
and the KD-Network’s (15.935%).  In addition, point cloud 
characteristics have been introduced to DDC-UL for recognition 
and segmentation.  Therefore, being sensitive to the target object 
featuring instantaneous changes, DDC-UL properly adapted to the 
vortex boundary features.  DDC-UL’s error rate of boundary 
contour was kept at 1.22%, which was 13 percentage points lower 
than that of the PointNet and the KD-Network’s.  To sum up, with 
respect to the reproduction of the 3D shape and the accuracy of the 
boundary contour, DDC-UL outperformed the three point cloud 
segmentation algorithms mentioned above.  The proposed method 
can retain the details of the vortex’s curved surface and the top 
surface’s boundary to the maximum extent, thus reproducing the 
overall morphology of the wind field vortex.  
3.2  Accuracy analysis of UAV-rice interaction vortex spatial 
parameters  
3.2.1 Result 

The UAV hovered over the image acquisition area for       
2 minutes.  Throughout the acquisition period, the UAV kept a 
flight speed of 0-0.14 m/s at 1.8 m above the canopy.  In total, 23 
frames of valid original point cloud data in the image acquisition 
area were collected, 20 of which were selected and processed by 
the proposed method to extract the spatial parameters (Table 4).  
After the experiment, the researcher took the Beidou Differential 
Positioning System into the field and collected 20 frames of feature 
points and boundary points in the static UAV-rice interaction wind 
field vortex.  According to the 3D reconstruction method in 
Section 2.3.3 and the spatial parameter solutions in Section 2.3.4, 
20 groups of static wind field vortex spatial parameters were 
extracted as Table 4 shows. 
3.2.2  Data analysis 

The proposed method can extract basically accurate volume 
parameters of the wind field vortex.  All 20 groups of volume 
parameters extracted by the method suggested in this paper fall into 
the range of 0.74m3 to 0.82m3, with an average error rate of no 
more than 1.4%.  Furthermore, F-test was conducted on the 20 

groups of the volume parameters extracted by DDC-UL against 
those by the manual method.  As Table 5 shows, the average 
difference is 0.010883 and the variance difference is 0.000197, 
while the F value (1.687662) is smaller than the critical value of 
2.168252 and the P value (0.131472) is greater than 0.05.  To sum 
up, there is no significant difference between the two sets of data. 
 

Table 4  Spatial parameters of the UAV-rice interaction wind 
field vortex 

Volume/m3 Acreage/m2 

Group
DDC-UL Manual 

Extracting Error DDC-UL Manual 
Extracting Error

01 0.778917 0.770733 1.06% 3.2465 3.3659 3.55%
02 0.809125 0.781954 3.47% 3.2822 3.3145 0.97%
03 0.742321 0.751221 1.18% 3.2519 3.2865 1.05%
04 0.806573 0.790244 2.07% 3.1958 3.3121 3.51%
05 0.75563 0.741269 1.94% 3.2783 3.2887 0.32%
06 0.810902 0.780488 3.90% 3.3414 3.291 1.53%
07 0.792552 0.772293 2.62% 3.2847 3.2615 0.71%
08 0.810244 0.781465 3.68% 3.2782 3.3319 1.61%
09 0.763914 0.740977 3.10% 3.3101 3.2951 0.46%
10 0.794642 0.77171 2.97% 3.3188 3.2582 1.86%
11 0.804886 0.793317 1.46% 3.2983 3.2785 0.60%
12 0.814696 0.784342 3.87% 3.2609 3.2643 0.10%
13 0.780451 0.805366 3.09% 3.3624 3.3053 1.73%
14 0.776199 0.78844 1.55% 3.281 3.3118 0.93%
15 0.769714 0.757415 1.62% 3.2484 3.3153 2.02%
16 0.792198 0.766124 3.40% 3.3367 3.2457 2.80%
17 0.80333 0.786166 2.18% 3.2626 3.2714 0.27%
18 0.750093 0.778917 3.70% 3.2573 3.2408 0.51%
19 0.794107 0.787025 0.90% 3.189 3.3279 4.17%
20 0.769039 0.772409 0.44% 3.2816 3.2711 0.32%

 
 

Table 5  F-test between the dynamic and static vortex volume 
parameters 

 Variable 1 Variable 2 

Average 0.785977 0.775094 
Variance 0.000484 0.000287 

Observed value 20 20 
df 19 19 
F 1.687662 1.687662 

P(F≤f) 0.131472 0.131472 
F Critical one-tail 2.168252 2.168252 

 

The proposed method can extract considerably accurate top 
surface area parameters of the wind field vortex.  The maximum 
difference among the 20 groups of top surface area parameters 
extracted by the proposed method was only 0.17m2 with an average 
error of 4.12%.  Moreover, F-test was conducted on the 20 groups 
of the top surface area parameters extracted by DDC-UL against 
those by the manual method.  As Table 6 shows, the average 
difference is 0.01357 and the variance difference is 0.000893, 
while the F value (1.886481) is smaller than the critical value of 
2.168252 and the P value (0.087837) is greater than 0.05.  In 
summary, there is no significant difference between the two sets of 
data. 

  

Table 6  F-test between the dynamic and static vortex top 
surface area parameters 

 Variable 1 Variable 2 

Average 3.278305 3.291875 
Variance 0.001893 0.001003 

Observed value 20 20 
df 19 19 
F 1.886481 1.886481 

P(F≤f) 0.087837 0.087837 
F Critical one-tail 2.168252 2.168252 
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4  Conclusion 

This paper has proposed a method for establishing a UAV-rice 
interaction vortex 3D model and extracting spatial parameters.  
Firstly, the original point cloud data of the image acquisition area 
were collected.  Secondly, DDC-UL processed the original point 
cloud data to develop the 3D point cloud image of the wind field 
vortex.  Thirdly, 3D curved surface was reconstructed and spatial 
parameters were then extracted.  Finally, the volume parameters 
and the top surface area parameters of UAV-rice interaction vortex 
were calculated and analyzed.  This paper verifies the accuracy 
and authenticity of the proposed method by analyzing the 
experimental data which was obtained from the original image of 
UAV-rice interaction vortex, its 3D model and relevant spatial 
parameters.  Conclusions are drawn as follows: 

(1) The 3D model establishment method of UAV-rice 
interaction vortex can reproduce more than 90% of the surface 
details and boundary contours of vortex.  The 3D model of the 
wind field vortex has essentially reproduced the actual vortex’s 
morphology because it was capable of capturing the details of the 
vortex curved surface.  The proposed method maintains the error 
rate of the 3D vortex shape within 2%, which is 18 and 14 
percentage points lower than that of the Snapnet (20.025%) and the 
KD-Network’s (15.935%).  Moreover, the vortex’s boundary 
contour has been properly reproduced as a result of the 3D model’s 
adaptation to boundary variations.  As for the error rate of the 
boundary contour, the proposed method reports 1.22% which is 13 
percentage points lower than that of the PointNet and the 
KD-Network’s.  

(2) The spatial parameter extraction method of UAV-rice 
interaction vortex is of high accuracy and no significant difference 
has been found between the dynamic vortex spatial parameters and 
the static ones.  All 20 groups of wind field vortex volume 
parameters are in the range of 0.74m3 to 0.82m3, with an average 
error rate of only 1.4%.  In the F-test for the 20 groups of wind 
field vortex volume parameters, the P value is greater than 0.05.  
In addition, the maximum difference among the 20 groups of wind 
field vortex top surface area parameters is only 0.17m2, with an 
average error of 4.12%.  In the F-test for the 20 groups of wind 
field vortex top surface area parameters, the P value is also greater 
than 0.05.  

 
Acknowledgments 

This research is supported by National Natural Science 
Foundation of China (31771682), Science and Technology 
Planning Project of Guangdong Province (2018A050506073), and 
the 111 Project (D18019).  Special thanks go to the Guangdong 
Academy of Agricultural Sciences, to Yaoming Huang, Shuang 
Guo, Zhijie Liu, and Junguang Yao for helping with the field 
experiment. 

 
[References] 

[1] Lan Y B, Chen S D, Fritz B K.  Current status and future trends of 
precision agricultural aviation technologies.  International Journal of 
Agricultural & Biological Engineering, 2017; 10(3): 1–17.  doi: 
10.3965/j.ijabe.20171003.3088.  

[2] Zhou Z Y, Zang Y, Luo X W, et al.  Technology innovation development 
strategy on agricultural aviation industry for plant protection in China.  
Transactions of the Chinese Society of Agricultural Engineering 
(Transactions of the CSAE), 2013, 29(24): 1–10. (in Chinese) 

[3] He X K, Bonds J, Herbst A, et al.  Recent development of unmanned 

aerial vehicle for plant protection in East Asia.  Int J Agric Biol Eng, 2017; 
10: 18–30.  doi: 10.19518/j.cnki.cn11-2531/s.2017.0130.  

[4] Mogili UR, Deepak BBVL.  Review on application of drone systems in 
precision agriculture.  Procedia Computer Science, 2018; 133: 502–509.  
doi: 10.1016/j.procs.2018.07.063. 

[5] LI J Y, Zhou Z Y, Lan Y B, et al.  Distribution of canopy wind field 
produced by rotor unmanned aerial vehicle pollination operation.  
Transactions of the Chinese Society of Agricultural Engineering, 2015; 
31(03):77–86. 

[6] Chen S D, Lan Y B, Bradley K F, et al.  Effect of Wind Field below Rotor 
on Distribution of Aerial Spraying Droplet Deposition by Using 
Multi-rotor UAV.  Transactions of the Chinese Society for Agricultural 
Machinery, 2017; 48(08):105–113. 

[7] Liu J T, Wu W H, Li J, et al.  Trajectory controller design for quadrotor 
UAVs on wind field disturbance.  Flight Dynamics, 2016; 34(02): 47–50, 
54.  doi:10.13645/j.cnki.f.d.20160110.015. 

[8] Jiang K, Wang Z H, Fan J R, et al.  Droplet Deposition Rules of Multi 
Rotor UAV Flight Loads Impact.  Journal of Agricultural Mechanization 
Research, 2020; 42(05): 25–32.  doi: 10.13427/j.cnki.njyi.2020.05.004. 

[9] Zheng Y J, Yang S H, Liu X X, et al.  The computational fluid dynamic 
modeling of downwash flow field for a six-rotor UAV.  Frontiers of 
Agricultural Science and Engineering, 2018(02). 

[10] Li J Y, Zhou Z Y, Lan Y B, et al.  Distribution of canopy wind field 
produced by rotor unmanned aerial vehicle pollination operation.  
Transactions of the Chinese Society of Agricultural Engineering, 2015; 
31(3): 77–86. (in Chinese) 

[11] Li J Y, Shi Y Y, Lan Y B, et al.  Vertical distribution and vortex structure 
of rotor wind field under the influence of rice canopy.  Computers and 
Electronics in Agriculture, 2019; 159, 140–146.  doi: 10.1016/j.compag. 
2019.02.027. 

[12] Qin N, Hu X, Dai H.  Deep fusion of multi-view and multimodal 
representation of ALS point cloud for 3D terrain scene recognition.  
ISPRS Journal of Photogrammetry and Remote Sensing, 2018; 143: 
205–212.  doi: 10.1016/j.isprsjprs.2018.03.011. 

[13] Boulch A, Guerry J, Le Saux B, et al.  SnapNet:3D point cloud semantic 
labeling with 2D deep segmentation networks.  Computers and Graphics, 
2018; 71: 189–198.  doi: 10.1016/j.cag.2017.11.010. 

[14] Zhang Z, Cui Z,Xu C, et al.  Joint task-recursive learning for semantic 
segmentation and depth estimation.  Proceedings of European Conference 
on Computer Vision, 2018.  doi: 10.1007/978-3-030-01249-6 15. 

[15] Wu B, Wan A, Yue X, et al.  SqueezeSeg:Convolutional neural nets with 
recurrent CRF for real-time road-object segmentation from 3D lidar point 
cloud.  Proceedings of IEEE International Conference on Robotics and 
Automation, 2018: 1887–1893. 

[16] Maturana D,Scherer S.  VoxNet:A 3D convolutional neural network for 
real-time object recognition.  Proceedings of IEEE International 
Conference on Intelligent Robots and Systems, 2015.  doi: 10.1109/ 
IROS.2015.7353481. 

[17] Chang A X, Funkhouser T, Guibas L, et al.  ShapeNet:An 
information-rich 3D model repository.  arXiv:1512.03012, 2015. 

[18] Huang J, You S.  Point cloud labeling using 3D convolutional neural 
network.  Proceedings of International Conference on Pattern Recognition, 
2016.  doi: 10.1109/ICPR.2016.7900038. 

[19] Tchapmi L, Choy C, Armeni I, et al.  SEGCloud:Semantic segmentation 
of 3D point clouds.  Proceedings of International Conference on 3D 
Vision, 2017: 537–547. 

[20] Charles R Q, Hao S, Mo K, et al.  PointNet:Deep learning on point sets 
for 3D classification and segmentation.  Proceedings of IEEE Conference 
on Computer Vision and Pattern Recognition, 2017. 

[21] Qi C R, Yi L, Su H, et al.  PointNet++:Deep hierarchical feature learning 
on point sets in a metric space.  Advances in Neural Information 
Processing Systems, 2017: 5099–5108. 

[22] Riegler G, Ulusoy A O, Geiger A.  OctNet:Learning deep3D 
representations at high resolutions.  Proceedings of IEEE Conference on 
Computer Vision and Pattern Recognition, 2017. 

[23] Klokov R, Lempitsky V.  Escape from cells:Deep KDnetworks for the 
recognition of 3D point cloud models.  Proceedings of IEEE International 
Conference on Computer Vision, 2017. 

[24] Su H, Jampani V, Sun D, et al.  SPLATNet:Sparse lattice networks for 
point cloud processing.  Proceedings of IEEE Conference on Computer 
Vision and Pattern Recognition, 2018.  

 


