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Abstract: Sugarcane aphid (SCA), Melanaphis sacchari, is one of the most prominent insect pests of grain, forage and 
bio-energy sorghum in the southern US since 2013.  The timing and dosage of a pesticide application for SCA depend on a 
close monitoring of its pressure or severity change in the field.  To assist the field scouting, digital images were taken using a 
smart phone in proximity of infected leaves and corresponding image processing algorithms were developed later to estimate 
the infestation severity in this study.  Image samples were grouped into four classes according to the infestation severity for 
aphid management considerations: no threat (0-10 SCA/leaf), insecticide use should be considered (11-125 SCA/leaf), 
insecticide should be used and yield loss likely (126-500 SCA/leaf), and plant death possible (more than 500 SCA/leaf).  With 
5-fold cross validation, results showed that the best average classification accuracy across the four SCA classes was 85.0% with 
the modified OVO-SVM algorithm.  The SCA quantification accuracies achieved in this study using the SVM algorithm 
showed the promise of using machine learning algorithms in this case of aphid density estimation on sorghum leaves.  The 
methodology developed in this study can be modified with more sophisticated machine learning algorithms and more data in 
the future to be incorporated into a handheld or a mobile remote sensing system to assist growers and researchers with 
automatically quantifying SCA in a fast and objective manner. 
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1  Introduction  

Sorghum is one of the top five cereal crops in the world[1].  
Ranked the first in the world’s grain sorghum producers, the United 
States harvested 10.1 million tonnes grain sorghum[2] with an 
estimated economic value of $1.35 billion[3] in 2016.  Texas 
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contributed over $388 million which was the second largest 
producer in the US after Kansas[3].  However, the North America 
sorghum industry is threatened by a new invasive pest, the sugarcane 
aphid (SCA), Melanaphis sacchari (Zehntner) (Hemiptera: 
Aphididae).  Since the first report in 2013, the aphid has been found 
on  sorghum in 17 states and over 400 counties in the US as well as 
all sorghum producing regions in Mexico by 2015, with significant 
yield loss ranging from 10% to greater than 50%[4].  SCA damage 
to sorghum results from direct loss of plant nutrients through their 
feeding on plant sap, and leads to leaf chlorosis and necrosis, and 
eventual seed head decline and yield loss.  They also produce 
honeydew which deposits on the upper side of the leaf underneath 
the leaf they cluster on its underside.  This sticky substance attracts 
black sooty mold and can also clog equipment during harvesting[4].  
One avenue of management is the use of foliar-applied insecticides 
which are applied according to guidelines based on density of aphid 
infestation on the leaves[5].  In most common situations of sorghum 
production in the U.S., insecticide use is advised if the field average 
is 40 to 100 sugarcane aphids per leaf or greater[5].  An immature 
SCA takes only 4 to 12 days to become an adult and lives for another 
10 to 37 days with a reproductive potential of 34 to 96 nymphs[4,6,7] .  
With such a rapid reproductive potential, pest monitoring to obtain 
estimates of aphid density on the leaves is recommended once or 
twice per week. 

Unfortunately, manual estimation of the number of SCA on 
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leaves is a difficult and time-consuming task prone to wide variation 
in estimation due to variation in observer assessment[8].  Immature 
and adult SCA colonize in clusters on the underside of sorghum 
leaves so leaves need to be turned over for observation, and the 
structure and composition of the aphid cluster can range from small 
number of aphids forming a cluster to large cluster with many aphids 
of multiple sizes (development stages)[9].  Educational materials on 
the identification of the pest and estimation of its population 
densities on leaves have been developed.  The educational formats 
included a 6-min instructional video and a 22-min pre-recorded 
slideshow which were shown to south Texas pest managers.  The 
instructional video significantly modified their accuracy at aphid 
density estimation[8], however, the process is time-consuming and 
field use varies. 

If a computer vision system can partially automate this 
estimation process, it will not only reduce the observer variation, but 
also better document the original infestation situation with imagery 
for further studies.  Such a computer vision system can be 
ultimately integrated in a field robot with a mechanical arm which 
can conduct automatic scouting to save human labor.  For the 
computer vision system, however, challenges exist in the SCA 
quantification algorithm.  The size of SCA clusters and density of 
aphids in a cluster varies.  Moreover, the color and size of SCA can 
vary from pale yellow, tan to gray depending on the maturity level 
and species, as showed in Figure 1.  These challenges can be 
addressed better by advanced supervised machine learning 
algorithms. 

The methods based on machine learning method can help farms 
reduce damage and increase their incomes, and can be applied to 
various crops [10].  Machine learning algorithms have been applied 
in agriculture, such as to detect citrus greening disease at leaf level 
with two-stage back propagation neural network[11], to recognize 
insects on sticky traps with feed-forward neural network[12], to 
recognize moths in surveillance videos using deep convolutional 
neural networks[13], and to count pests in the paddy field using image 
analysis[14]. 

 

 
Figure 1 Sugarcane aphid clusters on a sorghum leaf.  SCAs were 
in different maturity stages with different colors and sizes and were 

highly overlaid with each other.  Image was taken by authors in 
fall, 2015, in Texas 

 

Among machine learning methods, support vector machine 
(SVM) classifier is one of the most classical supervised machine 
learning models[15].  Compared with some other popular machine 
learning algorithms such as artificial neural network, SVM often 
suffers less with the overfitting issue and can work with small 
training data sets.  Given a set of training data with class labels, 
SVM maps the data into a higher dimensional space where an 
optimal hyperplane can be constructed to linearly separate the data 
into classes; new data are then assigned into one of the classes using 
the developed model[16].  Inputs of the SVM model are often the 

features extracted from the imagery to recognize pests including 
color in different color spaces, shape, and texture features.  
Cost-support vector classification (C-SVC) was applied on 
true-color imagery to detect citrus greening disease (HLB) based on 
the texture and histograms features in gray-scale and hue, saturation 
and intensity color spaces were extracted from the digital images of 
citrus leaves with different disease severities under natural lighting, 
resulted in an accuracy of 91.9%[17].  In another application of 
identifying and counting five rice pests on rice light traps, SVM was 
used with 156 inputs including color, shape and texture features 
extracted from digital images of the rice light traps and achieved an 
average accuracy of 97.5% with 7-fold cross validation[18].  
Similarly, SVM with different kernel functions and with both 
morphological and color features was used to detect thrips on 
strawberry flowers[19], evaluate leafminer damage on cucumber 
leaves[20], and evaluate the browning degree on mongo[21]. 

To the best of our knowledge, no study has been conducted to 
develop an SVM based on machine learning model for estimation 
the severity of SCA on sorghum using digital images.  The goal of 
this study is to partially automate the current manual scouting and 
classification for SCA infestations on sorghum leaves using 
true-color digital imagery and SVM based machine learning 
modeling.  The specific objectives were to (1) develop a feature 
extraction method to effectively represent the severity of SCA 
infestation on images, (2) evaluate the improved multi-class 
classification model performance on severity assessment of SCA 
infestation. 

2  Materials and methods 

2.1   Field image collection 
Field data collection was conducted in a SCA-infested 

bioenergy sorghum field located on the Texas A&M University 
Farm in College Station, TX, in September 2015 and 2016.  The 
sorghum was in their mid to late growth stage at the data collection.  
Each leaf was detached from the plant, quickly flattened against the 
black surface of a notepad case and imaged using a smart phone 
(iPhone 5S) with auto focus at a proximity of about 20 cm.  The 
undersides of all leaves were imaged; and both sides of the leaf were 
imaged if the upper side was evidently covered by honeydew.  
Imaging angle was selected to ensure uniform lighting on the images.  
Limited by the field of view and the pixel resolution of the camera, 
only part of the leaf where the SCA clustered or evident black sooty 
mold caused by the honeydew were imaged. 
2.2  Ground truth, sample size and summary of SVM modeling 

Ground truth number of SCA in each image of the leaf 
underside was manually counted by three different persons.  
Images were zoomed in and each SCA was marked by a red dot after 
being counted in GIMP2 image manipulation software (The GIMP 
Development Team) to ensure no multiple or missing count.  
According to the number of SCA, each image of the leaf underside 
was assigned into one of the four classes based on sorghum damage 
assessments from SCA infestations taken across multiple years, 
locations in the southern U.S., and sorghum hybrids[5,22]: Class A, 
0-10 SCA per leaf, no threat; Class B, 11-125 SCA per leaf, 
indicating a building population to be monitored weekly to 
determine if insecticide use is warranted; Class C, 126-500 SCA per 
leaf, insecticide must be applied quickly and some yield loss may be 
expected; Class D, greater than 500 SCA per leaf, significant yield 
reduction and plant death possible.   Example image of each class 
was shown in Figure 2.  
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a. Class A: 0- 

10 SCA per leaf 
b. Class B: 11- 

125 SCA per leaf 
c. Class C: 126- 

500 SCA per leaf 
d. Class D: more 

than 500 SCA 
per leaf 

 

Figure 2  Example images of underside leaves in each class 
 

Figure 3 shows a framework of the research work in this study.  
After texture and color features were extracted and input to each 
classifier, two multi-class classifiers were optimized and compared 
for the severity SCA estimation: improved One-Versus-One SVM 
(OVO-SVM) and improved Hierarchical SVM (H-SVM).  Grid 
search was used to optimize model parameters.  Finally, the 
classification results of the two classifiers with and without 
optimization were compared using 5-fold cross validation. 

 
Figure 3  The framework of the research proposal 

 

2.3  Image feature extraction 
Texture and color features were extracted to be inputs to the 

SVM models.  The digital images were first converted from the 
original Red, Green and Blue (RGB) color space to the Hue, 
Saturation and Value (HSV) color space to better separate pixel 
intensity variation from color variation in the images.  Then texture 
feature was extracted based on the Gray Level Co-occurrence 
Matrix (GLCM) calculated from the gray level image.  It is a 
measure of how often different combinations of neighboring pixel 
values occur.  Equation (1) shows how each element in the GLCM 
was calculated according to Soh and Tsatsoulis[23] :  
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 (1) 
in which p is the (g1, g2)th entry in a normalized GLCM; g1 and g2 
vary from 1 to the number of grey levels which was down sampled to 
256 in this study; G(x, y) is the gray level of the center pixel and 
G(x+dx, y+dy) is the gray level of the neighboring pixel; x and y are 
the order of pixel by their row-column designations.  In this study, 
GLCMs were calculated along four directions – 0-degree, 45-degree, 
90-degree and 135-degree – and at the offset of one, in total 16 
statistics of texture features.  Four statistics including energy, 
entropy, contrast and dependency (Table 1) were derived from the 
calculated GLCMs.  

Besides the texture features, three color features – the first rank 
moment (mean value), the second rank moment (standard deviation), 

and the third rank moment – were extracted from each channel of the 
HSV and RGB color space which resulted in 18 statistics of color 
features (Table 2).  Hence, there were 34 statistics extracted for the 
texture and color features all together for each image.  

\ 

Table 1    Equations of texture features derived from the 
calculated gray level co-occurrence matrices 
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Table 2  Equations of color features derived from HSV and 
RGB channels 
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2.4  SVM Modelling for severity of sugarcane aphid infestation 
SVMs were originally designed for binary classification.  For 

multi-class classification such as the case in this study, often binary 
classifiers were constructed first and then combine for the 
multi-class classification.  Some of the typical multi-class SVM 
classification methods include One-versus-Rest SVM (OVR-SVM), 
One-versus-One SVM (OVO-SVM), direct acyclic graph SVM 
(DAG-SVM), hierarchical tree based SVM (H-SVM).  Among 
these methods, the H-SVM and the OVO-SVM are two of the most 
popular ones and were used in this study.  
2.4.1  SVM model parameter optimization 

After image feature extraction, SVM was implemented and 
optimized based on the LIBSVM library developed by Chang and 
Lin[24].  Among some common kernel functions including linear, 
polynomial, RBF and sigmoid, the RBF kernel has fewer numerical 
difficulties compared with the polynomial kernel which has more 
hyper parameters.  It has excellent generalization performance and 
low computational cost to nonlinearly maps samples into a higher 
dimensional space to handle the case when the relation between 
class labels and attributes in nonlinea[16].  After comparison, radial 
basis function (RBF) kernel was selected in this study to project the 
original inputs to a high-dimensional feature space so the data points 
that belong to different classes become mostly linearly separable. 

An important step in this study was to optimize the RBF kernel 
of the SVM model.  Two parameters of the RBF kernel were 
optimized: C and γ.  Parameter C is a penalty coefficient for the soft 
margin cost function which trades off misclassification of training 
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data points against the decision surface.  A smaller C results in a 
smoother decision surface while a larger C results in a decision 
surface with more correctly classification for all training data points.  
Parameter γ defines how far the influence of a single training data 
point reaches in determining the decision plane.  An excessively 
large value for parameter γ results over-fitting and a less generalized 
model, while a disproportionately small value of γ leads to 
under-fitting[25].  To find the optimal combination of C and γ, 
grid-search algorithm was used in this study.  Compared with some 
other optimization algorithms, the grid search method is one of the 
most simple and common methods by setting the upper and lower 
search bounds and the search interval and search the best value 
within the entire search area[26,27].  Too large a search interval 
wastes computational resource, while too small a search interval 
might render a satisfactory outcome impossible.  In this study, the 
search intervals of both parameters of C and γ were all set to 0.5, and 
the lower and upper search bounds of both parameters were all set 
from –10 to 10. 
2.4.2  Modified multi-class SVM classifications 

Considering the individuality of each training subset in the 
classical multi-classification methods, OVO-SVM and H-SVM 
were both modified by performing parameter optimizing in every 
binary classifier in this study. 

As for the H-SVM, a two-layer architecture was used for the 
four classes in this study[28,29].  The first layer was a binary classifier 
which distinguished the data from a combined class AB which 
corresponded to less than 126 SCA per leaf, and a combined class 
CD which corresponded to more than 125 SCA per leaf.  The 
second layer was two binary classifiers, one to distinguish the data 
that were classified to combined class AB to either Class A or B, the 
other to distinguish the data that were classified to combined class 
CD to either Class C or D.  

In the traditional H-SVMs, the process of parameter 
optimization for C and γ only perform once which result in 
neglecting the individuality of every training subset.  To increase 
the accuracy of multi-class classification, the strategy of multiple 
level parameter optimization was conducted in H-SVMs, 
specifically, parameter optimization for C, γ are performed in every 
level of training process of H-SVMs, the flowchart of training 
process is showed as Figure 4. 

 
Figure 4  Flowchart of the multi-class classification process of the 
Hierarchical SVM (H-SVM) used in this study with four infestation 
severity levels.  Class A: 0-10 SCA per leaf; Class B: 11-125 SCA 

per leaf; Class C: 126-500 SCA per leaf; Class D: more than   
500 SCA per leaf.  AB stands for the combination of Class A and 

Class B; CD stands for the combination of Class C and Class D 

The OVO-SVM trains a separate binary classifier for each 
different pair of classes, which in the case of this study were six 
(=nclass(nclass – 1)/2=4*3/2) separate classifiers between each two of 
the four different classes.  Similar like improved H-SVMs, the 
improved strategy is that parameters optimization based on grid 
search was conducted in each of 6 binary classifiers in the training 
process.  In the predicting process, the final classification is decided 
by the majority vote[30,31].  The flowchart of prediction process in 
OVO-SVMs is showed in Figure 5. 

 
Figure 5  Flowchart of the multi-class classification process of the 

improved OVO-SVM used in this study with four infestation 
severity levels.  Class A: 0-10 SCA per leaf; Class B: 11-125 SCA 

per leaf; Class C: 126-500 SCA per leaf; Class D: more than  
500 SCA per leaf 

3  Results and discussion 
To evaluate the SVM classification accuracy, 5-fold 

cross-validation was used considering the limited samples in this 
study.  All 180 images were randomly partitioned into five 
equal-sized groups.  Each time one group was retained as the 
validation dataset and the remaining four groups were used as 
training dataset.  The process was then repeated 5 times, with each 
of the five groups used once as the validation data.  Finally, the 
average of the five accuracies for each class was reported as the 
model prediction performance. 
3.1  Classification accuracies with different infestation severity 

Table 3 illustrates the classification accuracy for each class of 
SCA quantification with the modified H-SVM and OVO-SVM, 
respectively.  The accuracies for class A (less than 10) and class D 
(more than 500) were good for both methods.  However, the 
accuracies of class B (between 10-125) and class C (between 
126-500) were lower, especially for class C. 

 

Table 3  The SCA quantification accuracy using modified 
H-SVM and OVO-SVM methods 

Class Modified H-SVM Modified OVO-SVM

Class A (0 – 10 aphids/leaf) 100% 100% 
Class B (10 – 125 aphids/leaf) 76.0% 80.0% 
Class C (126 – 500 aphids/leaf) 57.8% 60.0% 
Class D (> 500 aphids/leaf) 100% 100% 
Mean 83.5% 85.0% 

 

Table 4 illustrates the recognition accuracy of modified H-SVM 
and OVO-SVM for all samples using 5-fold cross validation.  From 
this table, obvious differences between different fold can be 
observed, to estimate the performance of predicting modeling.  To 
avoid the randomness of data, the average recognition accuracy was 
adopted to estimate the performance of modified H-SVM and 
OVO-SVM. 
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Table 4  Average classification accuracy across the four classes 
of each fold of the 5-fold cross validation using modified H-SVM 

and OVO-SVM. 

 Modified H-SVM Modified OVO-SVM 

1st fold 82.9% 83.9% 

2nd fold 88.6% 89.3% 

3rd fold 77.1% 83.7% 

4th fold 91.4% 91.6% 

5th fold 71.4% 75.5% 

Mean 83.5% 85% 
 

3.2  Performance of binary classifiers 
Figure 6 and Figure 7 show the binary classification accuracies 

from the grid search optimization for different combinations of 
parameters C and γ for the H-SVM and OVO-SVM, respectively.  
The performance of each binary classifier directly indicates the 
effectiveness of feature extraction and parameter optimization of 

SVM and influences the overall performance of the multi-class 
classification. 

Figure 6 shows the results of the first- and second-layer binary 
classifiers using H-SVM.  A highest classification accuracy of 
91.03% was achieved for the first-layer binary classification 
between the combined Class AB (0-125 SCA per leaf) and the 
combined Class CD (more than 125 SCA per leaf) when parameter 
C was equal to 8.000 and γ was equal to 0.5000 in the RBF kernel 
(Figure 6a).  For the second-layer binary classifications in the 
H-SVM, a highest classification accuracy of 100% was achieved for 
the classification between Class A (0-10 SCA per leaf) and Class B 
(11-125 SCA per leaf) when parameter C was equal to 5.657 and γ 
was equal to 0.03125 in the RBF kernel (Figure 6b); and a highest 
classification accuracy of 100% was achieved for the classification 
between Class C (126-500 SCA per leaf) and Class D (more than 
500 SCA per leaf) when parameter C was equal to 256.0 and γ was 
equal to 0.1768 in the RBF kernel (Figure 6c). 

 
a. Accuracies of the first layer binary classification between Class AB 

(0-125 SCA per leaf) and Class CD (more than 125 per leaf) 
 b. Accuracies of the second layer binary classification between Class A 

(0-10 SCA per leaf) and Class B (11 to 125 SCA per leaf) 

 
c. Accuracies of the second layer binary classification between Class C  
(126 to 500 SCA per leaf) and Class D (more than 500 SCA per leaf) 

Note: C and γ values in the plots are shown in the logarithm to base 2. 
Figure 6  Waterfall plots illustrate accuracies from the grid search with different parameters C and γ combinations for each binary classifier 

in the H-SVM 
 

Figure 7 shows the grid search results of the six different pairs 
of binary classifiers in the OVO-SVM.  Class A (0-10 SCA per leaf) 
was well distinguished from Class B (11-125 SCA per leaf), Class C 
(126 to 500 SCA per leaf) and Class D (more than 500 SCA per leaf) 
with 100% highest classification accuracies when parameter c was 
equal to 5.657, 2.8284 and 0.35355, and γ was equal to 0.03125, 
0.044194 and 0.35355, respectively, in the RBF kernel (Figure 7a, b 
and c).  Similar highest classification accuracies were achieved for 
the binary classifier of Class B and Class D (100%), and the one of 

Class C and D (97.10%), when parameter c was equal to 1.4142 and 
362.0387, and γ was equal to 4 and 0.044194, respectively, in the 
RBF kernel (Figure 7e, and f).  The high classification accuracies of 
these binary classifiers indicated effectiveness of image feature 
extraction, SVM models and parameter optimization.  Similar as 
the results of the H-SVM, the binary classifier with the lowest 
classification accuracy was still for Class B and Class C at 83.33% 
when parameter c was equal to 724.0773 and γ was equal to 
0.003906 in the RBF kernel (Figure 7d). 
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a. Class A vs. Class B  b. Class A vs. Class C 

 
c. Class A vs. Class D  d. Class B vs. Class C 

 
e. Class B vs. Class D  f. Class C vs. Class D 

 

Figure 7  Waterfall plots illustrate accuracies from the grid search with different parameters C and γ combinations for each binary  
classifier in the OVO-SVM.  Class A: 0-10 SCA per leaf; Class B: 11-125 SCA per leaf; Class C: 126-500 SCA per leaf;  

Class D: more than 500 SCA per leaf.  C and γ values in the plots are shown in the logarithm to base 2 
 

3.3  Comparison of classical and modified multi-class SVM 
classifications 

In this study, modified multi-class SVM models slightly 
increased the classification accuracy of SCA infestation levels.  
Figure 8 showed the average recognition rate across the four SCA 
infestation classes using 5-fold cross validation with the classical 
and modified SVM classifiers.  The modified OVO-SVM model 
performed the best with an accuracy of 85.0% compared with the 
classical OVO-SVM model which had an accuracy of 74.1%.  The 
modified H-SVM model had similar performance than the classical 
H-SVM model which had a slight accuracy increase from 82.3% to 
83.5%.  The customized parameter optimization for each binary 
classification in the modified SVM models did slightly improve the 
accuracy over the classical multi-class classification in which the 
parameter optimization was general over the multiple binary classes.  
However, the customized parameter optimization increased the 
computational complexity for the training process.  The modified 
models are recommended when computation complexity and time is 

not a concern for the training process. 

 
Figure 8  The average recognition rate across the four SCA 

classes using 5-fold cross validation with classical and modified 
SVM classifiers.   For the H-SVM classifier, the recognition rate 

increased from 82.3% to 83.5%; for the OVO-SVM classifier,  
the recognition rate increased from 74.1% to 85.0% 
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3.4  Limitations and future work 
This study provided a framework of using smart phone based 

digital imagery and SVM based machine learning algorithm to 
assess the level of SCA infestation at leaf level in sorghum 
production.  The results were promising; however, the limited 
sample size prevented the SVM models investigated in this study 
from reaching their best performances.  The total sample size was 
180 and, with four classes, the sample size of each infestation level 
was about 45.  The results in this study was also reported using the 
cross validation due to the limited sample size in this study.  To 
further increase the estimation accuracy, the latest deep 
learning-based methods, such as various convolutional neural 
networks, can be investigated.  Those methods usually require huge 
amount of training samples.  A significant increase on sample size 
is recommended for further study on using machine learning 
methods for automatic pest infestation level assessment.  Sampling 
under various illumination conditions, shadow casting and with 
different imaging angles are recommended to increase the 
adaptability and generalization of the machine learning model 
development. 

4  Conclusion 

This study developed an automatic leaf level sorghum SCA 
infestation assessment method using digital images taken by a smart 
phone.  Two multi-class SVM models, the H-SVM and the 
OVO-SVM, and their modified versions were investigated to 
evaluate their performance in classifying the digital imagery into 
four infestation levels: 0-10, 11-125, 126-500, and more than    
500 SCA per leaf.  The best mean classification accuracy across the 
four classes was 85.0% with the modified OVO-SVM model.  The 
modified SVM models with customized parameter optimization for 
each binary classification slightly improved the accuracy over the 
classical multi-class classification in which the parameter 
optimization was general over the multiple binary classes.  More 
image samples under various illumination conditions, shadow 
casting and imaging angles as training data can increase the accuracy 
of the SVM models.  Future work can be conducted to investigate 
other machine learning models such as convolutional neural 
networks to improve the infestation assessment accuracy.  The 
digital imagery-based machine learning model for SCA 
quantification developed in this study can be improved and 
eventually integrated in an IoT system to assist researchers and 
producers in making more effective and sustainable spray decisions. 
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