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Abstract: Liquid crystal tunable filter (LCTF) based on hyperspectral imaging technology combined with machine learning is 
developed to identify muskmelon seed variety rapidly and non-destructively.  LCTF-based hyperspectral imaging system 
equipped with a cold ring LED source is constructed to acquire the reflectance spectra of the muskmelon seeds.  
Discriminating models based on support vector machine (SVM), linear discriminant analysis (LDA), and convolutional neural 
network (CNN) are then established to identify the seed variety with reflectance spectra as input.  It is found that the LDA 
model achieved the highest classification accuracy of 100% for the test set while a relatively low value of 96% and 83% was 
obtained for the SVM and CNN model respectively.  To improve classification accuracy of the model, data preprocessing 
(Savitzky-Golay smoothing and multiple scattering correction) and spectral feature extraction algorithm (successive projections 
algorithm and principal component analysis) were employed to treat the reflectance data.  With these treatments, the 
classification accuracy of the test set was improved to the highest value of over 99% for the SVM model and 86% for the CNN 
model.  The results showed that the LCTF-based hyperspectral imaging technology combined with machine learning was 
feasible to identify the muskmelon seed variety. 
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1  Introduction  

Muskmelon is one of the most important fruit in the world due 
to the advantages of health enhancement, short cultivation cycle, 
and remarkable economic effects[1].  Muskmelon variety, seed 
quality, environmental and nutritional factors are key elements 
determining the yield and quality of muskmelon, which are 
directedly related to the interests of fruit farmers and consumers.  
Therefore, the variety, purity and quality are critical in planting and 
growing of the muskmelons.  The variety of the muskmelon seeds 
can be identified by observing the seed appearance such as seed 
size, color, shape and texture, etc[2].  Chemical methods such as 
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high-performance liquid chromatography and gas 
chromatography-mass spectrometry are also commonly used to 
identify seed varieties by detecting the internal qualities such as 
protein, starch and aroma[3,4].  These methods, however, have the 
disadvantages of seed damage, time-consuming and high cost, and 
can only be applied on a small number of samples.  Therefore, it 
is critical to develop rapid and non-destructive testing technology 
to identify the variety of muskmelon seeds. 

With the development of machine learning, many kinds of 
non-destructive technology were proposed for seeds identification.  
Xianxi Liu group analyzed the geometric and color feature 
parameters of RGB images of corn seeds based on machine 
learning.  Four kinds of corn seeds were classified, and the 
accuracy rate reach to 95%[5].  Jia group combined near-infrared 
spectrum and SVM algorithm to identify four kinds of corn seeds, 
and the accuracy rate reach to 97.5%[6].  Cuilin Li group proposed 
the fluorescence reflectance method to test muskmelon seeds, 
which proved the possibility of identification muskmelon seeds 
with non-destructive technique combined with appropriate machine 
learning algorithm[7].   

Hyperspectral imaging technology has been widely used in 
detecting and monitoring of agricultural production since it can 
obtain both the internal and external information of the sample 
rapidly and non-destructively[8-25].  It has been verified in previous 
research that the hyperspectral imaging technology is an efficient 
approach to detect the growth information of crops[8,9], predict 
maturity and yield, track pests and diseases[11,12], detect the soil 
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nutrient[13], meat quality[14] and pesticide residue[15-17].  At present, 
the technology is also applied to identify seed variety and detect the 
vigor, component and purity of the seeds[18-25].  The hyperspectral 
imaging system used in these researches mainly consists of 
imaging spectrograph based on optical gratings and hot tungsten 
halogen lamps.  In this type of system, however, the samples are 
required to move in a direction perpendicular to scanning-line and 
may be heated and damaged by the hot light source.  

This paper aims to propose a liquid crystal tunable filter 
(LCTF) based on hyperspectral imaging technology equipped 
with a cold ring LED source to identify the muskmelon seed 

variety.  In this system, the seed samples are neither required to 
be moved nor to be heated due to the use of LCTF and cold LED 
source.  The LCTF-based hyperspectral imaging system was 
constructed to obtain reflectance data of 1100 muskmelon 
samples of eleven varieties.  With the reflectance data, 
discriminating models based on support vector machine (SVM), 
linear discriminant analysis (LDA), and convolutional neural 
network (CNN) were established to identify the seed varieties.  
Besides, data preprocessing and spectral feature extraction 
algorithm were also employed to optimize the accuracy of the 
discriminating model.   

 
Figure 1  Eleven seed varieties of muskmelon 

 

2  Material and Method 

2.1  Material 
Muskmelon seeds used in this paper were purchased from the 

seed company.  The epidermis of seeds is clean and free of 
foreign matter, and the purity is more than 99%.  In this paper, 
eleven muskmelon seed varieties were used and 100 samples were 
selected in the experiment for each variety.  The appearances of 
the muskmelon seeds were shown in Figure 1, where Number 1 to 
11 respectively correspond to “bairoushabai”, “baiyu2000”, 
“hongbaoshiyang”, “hongroushabai”, “lvbaoshiyang”, “meihua”, 
“meiqi”, “naixiangmiwang”, “kaqihuanghou”, “langchaoA710”, 
and “sumilong”. 
2.2  Hyperspectral imaging system and spectrum acquisition 

LCTF-based hyperspectral imaging system was constructed to 
collect the reflectance spectra of the muskmelon seeds, as is shown 
in Figure 2.   LCTF-based hyperspectral imaging system mainly 
consists of hyperspectral imaging camera, LED ring light source, 
bracket and computer.  The hyperspectral imaging camera is 
mainly formed by LCTF (Varispec VIS, PekinElmer Ltd), charge 
coupled device (CCD) detector (lm165, Lumenera Ltd.) and a 
camera lens (Schneider Xenoplan 1.9/35, Schneider Optics Ltd.).  

The transmission peak wavelength of the LCTF can be electrically 
tuned from 400 nm to 720 nm at 2 nm interval.  The spatial 
resolution of the CCD is 1392×1040.  The hyperspectral imaging 
camera is supported by the bracket (KAISER 5411 RS 2 XA, Photo 
Warehouse Ltd.) and a cold ring LED light source is used to 
illuminate the seeds uniformly.  A computer is used to control the 
system with a self-programming software.  

 
1. Hyperspectral imaging camera  2. LED ring light source  3. Adjusting 
handle  4. Connecting unit  5. Computer  6. Bracket 
Figure 2  Schematic diagram of the hyperspectral imaging system 
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In order to reduce the influence of dark current of the CCD 
detector, the hyperspectral images of the seeds (Iraw) should be 
corrected.  For this purpose, a standard white reference image 
(Iwhite) was acquired by using a whiteboard with nearly 100% 
reflectance and a dark reference image (Iblack) was acquired by 
covering the camera lens completely with its opaque cap.  The 
hyperspectral image (R) can be corrected as[16]: 

raw black

white black

I IR
I I

−
=

−
                  (1) 

where, R is equivalent to the relative reflectance. 
In order to obtain accurate and credible spectral data, Snake 

active contour segmentation algorithm was used to extract the 
contour of a single seed[26].  All pixel points within the contour of 
each seed were extracted and the reflectance spectra of all pixels 
within the contour were averaged and used as the reflectance for a 
single seed. 
2.3  Spectral preprocessing  

Spectral preprocessing is necessary since the spectral data 
contain irrelevant information such as noise, stray light, and sample 
background caused by the instrument and test conditions.  To 
reduce the influence of irrelevant information and highlight the 
effective information of the spectrum, Savitzky-Golay (SG) 
smoothing algorithm and multiple scattering correction (MSC) 
algorithm were employed to preprocess the spectra data[18].  The 
SG smoothing algorithm is an effective approach to reduce the 
random noise in the spectral data[19].  In this research, SG 
smoothing with 5 points of 3rd order polynomial was used to 
preprocess the spectral data. 

The MSC algorithm can be used to eliminate the effect of 
scattering and then enhance signal-to-noise ratio.  In the MSC 
algorithm, standard spectrum X  was first calculated by averaging 
the spectra of all the seed samples.  A univariate linear regression 
operation ( )Xχ α β= +  between the spectrum of each sample (χ) 

and the standard spectrum ( X ) were then performed to find the 
linear translation α and tilt offset β.  The corrected spectrum can be 
expressed as: 

MSC
χ βχ

α
−

=                   (2) 

2.4  Spectral feature extraction 
The original spectrum of muskmelon contains 68 wavelengths 

in the range of 450-718 nm at 4nm interval, considering the noise 
at two edges of spectral range.  The high dimensionality of the 
spectral data and the redundancy of the data may increase the 
calculation time and affect the accuracy and stability of the model.  
To circumvent this problem, successive projections algorithm (SPA) 
and principal component analysis (PCA) were used to extract the 
spectral feature [18].  

SPA is widely used in characteristic wavelength selection in 
the process of spectral data analysis.  The algorithm can find the 
combination of variables to minimize the redundant information in 
the spectrum matrix and the co-linearity between the variables.  In 
this method, the number of characteristic wavelengths is 
determined according to the root mean square error.  

PCA converts the original data into a new set of 
comprehensive variables (principal components).  Each principal 
component is a linear combination of the original variables and the 
correlation between the variables is eliminated, which helps to 
improve the stability of the model.  In this research, all principal 
components were sorted according to their contribution rate and the 

number of selected principal components was determined in order 
that the cumulative contribution rate reaches 99.99%.  
2.5  Classification algorithm 
2.5.1  Support vector machine 

Support vector machine (SVM) is a supervised classifier and 
widely used for spectral data division [22].  In the SVM 
classification algorithm, the original data are mapped to a 
higher-dimensional space and a hyperplane is constructed to 
maximize the distance between different classes and minimize the 
intra-class distance in the same class.  Non-linear SVM was 
applied in this research for data division with radial basis function 
used as kernel function and the parameters of the model was 
optimized by grid search algorithm. 
2.5.2  Linear discriminant analysis 

Linear discriminant analysis (LDA) is a classic algorithm that 
projects high-dimensional pattern samples onto the optimal 
discriminant vector space to extract the classification information 
and compress the feature space dimension [20].  After projection, 
the pattern samples have the largest inter-class space and the 
smallest intra-class distance so that the separability in the new 
space is maximized. 
2.5.3  Convolutional neural network 

Convolutional neural network (CNN) can learn data features 
such as peaks and valleys in the spectral curve and then are widely 
applied to spectral data division[20,23].  The CNN model used in 
this paper was one-dimensional Resnet101 with Relu as activation 
function and Stochastic Gradient Descent (SGD) as loss function, 
respectively.  The batch size and learning rate were respectively 
set as 30 and 0.005.  

3  Results and discussion 

3.1  Hyperspectral characteristics 
The Snake active contour segmentation algorithm was first used 

to extract the contour of each muskmelon seed sample and the 
results were shown in Figure 3 [26].  The contour segmentation was 
performed on a hyperspectral image at the wavelength of 664 nm.  
The reflectance spectra of each muskmelon seed were calculated by 
averaging the reflectance value of all the pixel points within the 
extracted contour.  The results were shown in Figure 4a, where 
obvious difference could be observed for the trends of the 
hyperspectral curves of different varieties of muskmelon seeds.  In 
addition, noise could be observed within the wavelength range of 
400-450 nm, which was caused by the low responsibility of the 
CCD and low light source intensity at this wavelength range.  In 
order to ensure the reliability of the data, only reflectance data 
within the spectral range of 450-720 nm were included for 
discriminative classifier modeling, as was shown in Figure 4b.   

 

 

 
Figure 3  Snake contour segmentation of muskmelon seeds at the 

wavelength of 664 nm 
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a. Reflectance of each sample.  Number 1 to 11 correspond to: bairoushabai, 

baiyu2000, hongbaoshiyang, hongroushabai, lvbaoshiyang, meihua, meiqi, 
naixiangmiwang, kaqihuanghou, langchaoA710, and sumilong 

b. All the reflectance spectra of 11 varieties of muskmelon 
seeds 

 

Figure 4  Reflectance spectra of muskmelon seed 
 

 

3.2  Data preprocessing analysis 
SG smoothing algorithm and MSC algorithm were first 

employed to preprocess the spectra to reduce the influence of 
irrelevant information and highlight the effective information of the 
spectrum.  The results of data preprocessing were shown in Figure 
5.  It was observed from Figure 5a that the reflectance spectra 
preprocessed by SG smoothing were smoother than the original 
spectra in Figure 4b, indicating parts of the noise were eliminated.  
Figure 5b demonstrated that reflectance spectra preprocessed by 
MSC were more concentrated than the original spectra.  In 
addition, large differences occurred within the wavelength range of 
450-500 nm, 525-650 nm, and 675-700 nm for the reflectance 
spectra of muskmelon seed varieties.  

 
a. SG preprocess 

 
b. MSC preprocess 

Figure 5  Spectral curves of all samples were preprocessed by SG 
smoothing and MSC 

3.3  Results of discrimination  
To construct discriminating model, eleven varieties of 

muskmelon seeds “bairoushabai”, “baiyu2000”, “hongbaoshiyang”, 
“hongroushabai”, “lvbaoshiyang”, “meihua”, “meiqi”, 
“naixiangmiwang”, “kaqihuanghou”, “langchaoA710”, and 
“sumilong” were marked as 1-11 respectively.  SG smoothing 
algorithm and MSC algorithm were first employed to preprocess 
the spectra of the muskmelon seeds.  PCA and SPA were then 
used to extract the spectral feature of both the preprocessed spectra 
and original spectra.  After that, discriminating models based on 
SVM, LDA and CNN were respectively established to classify the 
muskmelon seeds.  The structure of CNN was shown in Figure 6.  
The results obtained by these models were shown in Table 1, Table 
2 and Table 3.  In these tables, Np denotes the number of 
characteristic wavelengths or principal components. 

 
Figure 6  Structure of ResNet-101 convolutional neural networks   

 

3.3.1  Optimal discrimination accuracy for the models 
It was observed that the discrimination accuracy of LDA 

model based on full-wavelength data was the highest.  More 
specifically, the discrimination accuracy for both the training set 
and the test set reached a high value of 100% whether the spectral 
data was preprocessed by SG smoothing/MSC algorithm or not 
(see Table 1-3).  As far as the discriminating model based on 
SVM was concerned, the discriminating accuracy for the training 
set and testing set was as relatively low as 99.3% and 96.15% (see 
Table 1).  The discriminating accuracy can be improved to a high 
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value of 99.23% for the test set when the MSC algorithm was 
employed to preprocess the reflectance data, as was shown in Table 
3.  The value of the discriminating accuracy approached that for 
the LDA model. 

 

Table 1  Discriminating results of muskmelon seed variety 
without preprocessing 

Spectral Feature 
Extraction Np 

Classification 
algorithm 

Accuracy for 
train set/% 

Accuracy for
test set/% 

Full 67 SVM 99.33 96.15 

SPA 26 SVM 97.57 94.61 

PCA 9 SVM 93.72 91.28 

Full 67 LDA 100 100 

SPA 26 LDA 99.00 98.00 

PCA 9 LDA 92.00 91.00 

Full 67 CNN 90.33 81.03 

SPA 26 CNN 90.33 76.92 

PCA 9 CNN 90.33 66.41 
 

Table 2  Discriminating results of muskmelon seed variety 
with SG smooth preprocessing 

Spectral Feature 
Extraction Np 

Classification 
algorithm 

Accuracy for 
train set/% 

Accuracy for
test set/% 

Full 67 SVM 99.22 96.15 

SPA 30 SVM 98.34 95.38 

PCA 8 SVM 92.51 90.00 

Full 67 LDA 100 100 

SPA 30 LDA 98.00 98.00 

PCA 8 LDA 92.00 90.00 

Full 67 CNN 90.33 81.03 

SPA 30 CNN 90.33 76.92 

PCA 8 CNN 90.33 66.41 
 

Table 3  Discriminating results of muskmelon seed variety 
with MSC preprocessing 

Spectral Feature 
Extraction Np 

Classification 
algorithm 

Accuracy for 
train set/% 

Accuracy for
test set/% 

Full 67 SVM 99.88 99.23 

SPA 27 SVM 99.22 97.69 

PCA 29 SVM 99.88 99.23 

Full 67 LDA 100 100 

SPA 27 LDA 99.00 99.00 

PCA 29 LDA 99.00 98.00 

Full 67 CNN 90.22 86.67 

SPA 27 CNN 90.22 62.50 

PCA 29 CNN 90.33 85.64 
 

But for the discriminating model based on CNN, the 
discriminating accuracy was much lower than the LDA model and 
the SVM model.  For the CNN model based on the 
full-wavelength data without preprocessing, discrimination 
accuracy was only 81.03% for the test set (Table 1).  A relatively 
high accuracy of 86.67% can be achieved after MSC algorithm was 
applied to preprocessing the data (Table 3).  This value, however, 
was still much lower than that achieved by the LDA model and the 
SVM model.  These findings indicated that the performance of the 
CNN discriminating model was inferior to that of the SVM model 
and LDA model, which showed that CNN had no advantage for 
small sample. 
3.3.2  Effects of preprocessing 

By comparing Table 1 and Table 3, it can be seen that the 

preprocessing method of MSC can effectively improve the 
accuracy of the discriminating models.  The SG smoothing 
pretreatment, on the contrary, did not improve the discrimination 
accuracy and even leads to slight reduction in the accuracy in some 
cases.  The reduction maybe resulted from the fact that some 
features of the spectrum disappear in the smoothing process.  

To further understand the different effects of the MSC and the 
SG smoothing pretreatment, T-distributed stochastic neighbor 
embedding (t-SNE) was used to project the data into 2-dimensional 
space for visualization and the results were shown in Figure 7.   
The distribution of muskmelon seed varieties in Figure 7a was 
similar to that in Figure 7b, which indicated that preprocessing by 
SG smoothing did not improve the distinguishability of the data.  
It confirmed the conclusion that SG smoothing pretreatment did not 
improve the discrimination accuracy of the models.  

 
a. None-preprocessing 

 
b. Preprocessing by SG smoothing 

 
c. Preprocessing by MSC 

Figure 7  T-SNE visualization based on different data 
preprocessing 

 

But for MSC preprocessing, the distribution of the data 
preprocessed by MSC (Figure 7c) was obviously different from 
that of the original data (Figure 7a).  Parts of the seed variety were 
separated in the 2-dimensional space, as was shown in Figure 7c.  
These findings demonstrated that MSC pretreatment can improve 
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the distinguishability of the data.  Subsequently, the classification 
accuracy of the discriminating models can be improved.   
3.3.3  Effects of spectral feature extraction  

To examine whether these discriminating models can achieve 
high accuracy with less spectral features, PCA and SPA were 
employed to extract spectral features and their impacts on the 
models were shown in Table 1-3.  For the discriminating models 
based on the original data (reflectance data were not preprocessed 
by SG and MSC, see Table 1), the use of both PCA and SPA to 
extract spectral feature usually leaded to reduction in the 
accuracy.  For example, the discriminating accuracy of the SVM 
model based on full-wavelength data was 96.15% for the test set.  
The value decreased to 94.64% when SPA was used to select the 
characteristic wavelength and it further decreases to 91.28% 
when PCA was used.  The decreasing trend can also be observed 
for both LDA and CNN discriminating models.  For the 
discriminating models based on the spectral data preprocessed by 
SG smoothing (see Table 2), similar results were achieved since 
the SG smoothing did not improve the distinguishability of the 
data.    

However, for the the discriminating models based on the 
spectral data which were preprocessed by MSC, the case was 
different (Table 3).  The discriminating accuracy of the test set for 
the SVM model remained at a high value of 99.23% when PCA 
was applied for feature extraction.  This value of accuracy was the 
same with that of the model based on full-wavelength data even 
when the number of the spectral feature is reduced from 67 to 27.  
In addition, the discrimination accuracy of the test set for the LDA 
model was as high as 99.00% when SPA was used to extract 27 
characteristic wavelengths from 67.  These findings demonstrated 
that the SVM/LDA discriminating models combined with MSC 
preprocessing and PCA/SPA feature extracting was a suitable 
approach to achieve relatively high accuracy with less spectral 
features. 

4  Conclusion 

LCTF-based hyperspectral imaging technology combined with 
machine learning was proposed in this paper to identify muskmelon 
seed varieties. With the reflectance data acquired by LCTF-based 
hyperspectral imaging technology, discriminating models based on 
SVM, LDA and CNN were established to classify 11 varieties of 
muskmelon seeds.  The effects of the data preprocessing and the 
spectral feature extracting on the discriminating accuracy were also 
investigated. It was revealed that the discrimination accuracy of the 
training set and test set for the LDA model reached the highest 
value of 100%. The discrimination results of the training set and 
test set of the SVM discriminating model can reach 99.88% and 
99.23 % when the spectrum data were preprocessed by MSC. It is 
also demonstrated that the SVM/LDA discriminating model 
combined with MSC preprocessing and PCA/SPA feature 
extracting was a suitable approach to achieve relatively high 
accuracy with less spectral features. The findings in this paper 
indicate that LCTF-based hyperspectral imaging technology 
combined with machine learning is a feasible approach to identify 
the varieties of muskmelon seeds. 
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