Desert locust plague monitoring using time series satellite data
Abstract
Abstract: Desert locust has caused great losses to food security in East Africa andSouthwest Asia since its outbreak in 2019. This study selected six locust damaged countries (India,Pakistan,Ethiopia,Kenya,Somalia, andYemen) as the research object. The vegetation coverage curves in these six countries from February 2000 to June 2020 were obtained based on the remote sensing data. Then, the desert locust damage area is monitored by determining determine the locust damage threshold of different vegetation cover types (cropland, grassland and shrub) based on the change of vegetation coverages. The results showed that desert locust caused serious damage to vegetation. By the end of June 2020, Desert Locust harmed vegetation area of 1058.3 thousand hectares, 792.9 thousand hectares, 1137.5 thousand hectares, 936.8 thousand hectares, 780 thousand hectares and 763.5 thousand hectares inIndia,Pakistan,Ethiopia,Kenya,Somalia andYemen, respectively. The research results laid the foundation for real-time, rapid, and large-scale monitoring of locust plague dynamics, and provide a scientific basis for reasonable and economic prevention of locust plague.
Keywords: Desert locust plague, vegetation cover, monitoring, time series
DOI: 10.33440/j.ijpaa.20200304.111
Citation: Geng Y, Dong Y Y, Zhao L L, Huang W J, Ruan C, Zhang H S, Zhang B Y. Desert locust plague monitoring using time series satellite data. Int J Precis Agric Aviat, 2020; 3(4): 24–30.
Full Text:
PDFReferences
Anderson N L. Some relationships between grasshoppers and vegetation. Annals of the Entomological Society of America, 1964; 57(6): 736–742. DOI: 10.1093/aesa/57.6.736
Duranton, J. F.; Lecoq, M. Le Criquet Pèlerin au Sahel; Comité permanent inter-etats de luttecontre la sécheresse au Sahel: Ouagadougou, Brukina Faso, 1990.
Cherlet M, Mathoux P, Bartholomé E and Defourny P. SPOT VEGETATION contribution to desert locust habitat monitoring// Proceedings of the VEGETATION 2000 Conference. 2000; Italy: Lake Maggiore: 247–257.
Ould Baba, M. Biogéographie du Criquet pèlerin en Mauritanie, Fonctionnement d’une Aire Grégarigène et Conséquences sur L’organisation de la Surveillance et de la Lutte Anti-acridienne.Master Thesis, École Pratique des Hautes Études, FAO, Rome, Italy, 2001.
Cissé S, Ghaout S, Babah Ebbe M A, Kamara S and Piou C. Field verification of the prediction model on desert locust adult phase status from density and vegetation. Journal of Insect Science, 2016; 16(1): 74. DOI: 10.1093/jisesa/iew046
Murali Sankar P and Shreedevasena S. 2020. Desert locusts (Schistocerca gregaria) – A global threatening transboundary pest for food security. Research Today, 2(5): 389–391.
Cressman K. Desert Locust Guidelines 3. Information and forecasting. Desert Locust Guidelines, 2001; 29–31.
Meynard C N, Leco, M, Chapuis M and Piou C. On the relative role of climate change and management in the current desert locust outbreak in East Africa. Global Change Biology, 2020; 26(7): 3753–3755.
Joshi M J, Raj V P, Solanki C B and Vaishali V B. Desert Locust(Schistocera gregaria F.) outbreak in Gujarat (India). Agriculture and Food: E-Newsletter, 2020; 2(6): 691–693.
FAO. Locust watch, Food and Agricultural Organization of the United Nations. Desert Locust Bulletin, 2019; 483: 1–8.
FAO. Desert Locust. Rome: Author. 2020; Retrieved from http: //www.fao.org/locusts/en/.
Adriaansen C, Woodman J D, Deveson E and Drake V A. Chapter 4.1 - The Australian Plague Locust—Risk and Response. In: Shroder J.F., Sivanpillai R. (Eds.), Biological and Environmental Hazards, Risks, and Disasters. Elsevier, 2016; 67–86.
Ciancio A and Mukerji K G. Integrated management of arthropod pests and insect borne diseases. Berlin: Springer Netherlands, 2010; 163–183.
Latchininsky A V. Locusts and remote sensing: A review. Journal of Applied Remote Sensing, 2013; 7(1): 5099.
Araujo Picoli M C , Camara G , Sanches I , et al. Big earth observation time series analysis for monitoring Brazilian agriculture. ISPRS Journal of Photogrammetry and Remote Sensing, 2018; 145PB(NOV.): 328–339.
Cressman, K. Chapter 4.2 - Desert Locust. In: Shroder J.F., Sivanpillai R. (Eds.), Biological and Environmental Hazards, Risks, and Disasters. Elsevier, 2016; 87–105.
Hü C, ttich, Herold M , et al. Indicators of Northern Eurasia's land-cover change trends from SPOT-VEGETATION time-series analysis 1998-2005. International Journal of Remote Sensing, 2007.
Robbins P F , Chhangani A K , Rice J , et al. Enforcement Authority and Vegetation Change at Kumbhalgarh Wildlife Sanctuary, Rajasthan, India. Environmental Management, 2007; 40(3): 365–378.
Beatriz Martínez, María Amparo Gilabert. Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sensing of Environment, 2009; 113(9): 1823–1842.
Zhou Q, Li B , Chen Y . Remote Sensing Change Detection and Process Analysis of Long-Term Land Use Change and Human Impacts. Ambio, 2011; 40(7): 807–818.
Jia W, Zhao S, Liu S. Vegetation growth enhancement in urban environments of the Conterminous United States. Global Change Biology, 2018.
Bryceson K P. Digitally processed satellite data as a tool in detecting potential Australian plague locust outbreak areas. Journal of Environmental Management, 1990; 30(3): 191–207. DOI: 10.1016/ 0301-4797(90)90001-D.
Ji R, Xie B Y, Li D M, Li Z and Zhang X. Use of MODIS data to monitor the oriental migratory locust plague. Agriculture, Ecosystems and Environment, 2004; 104(3): 615–620. DOI: 10.1016/j.agee.2004.01.041.
Chen J, Ni S X and Li Y M. LAI retrieval of reed canopy using the neural network method. Remote Sensing for Land and Resources, 2008; (2): 62–67.
Ji R, Zhang X, Xie B Y, Li Z, Liu T J and Liu C. Use of MODIS data to detect the Oriental migratory locust plague: a case study in Nandagang, Hebei Province. Acta Entomologica Sinica, 2003; 46(6):713–719.
Zha Y, Gao J, Ni S X and Shen N. Temporal filtering of successive MODIS data in monitoring a locust outbreak. International Journal of Remote Sensing, 2005; 26(24): 5665–5674. DOI: 10.1080/ 01431160500196349
Zha Y, Ni S X, Gao J and Liu Z B. A new spectral index for estimating the oriental migratory locust density. Photogrammetric Engineering and Remote Sensing, 2008;74(5): 619–624. DOI: 10.14358/PERS.74.5.619
Deveson E D. Satellite normalized difference vegetation index data used in managing Australian plague locusts. Journal of Applied Remote Sensing, 2013; 7(1): 075096. DOI: 10.1117/1. JRS. 7. 075096
Eltoum M, Dafalla M and Hamid A. Detection of change in vegetation cover caused by desert locust in Sudan//SPIE Proceeding Asia Pacific Remote Sensing. 2014; Beijing, China: SPIE.
Zhao F J. The Application of Hyper Spectra in Locusts Monitor on Grassland. Beijing: Chinese Academy of Agricultural Sciences, 2014, 15–20 (In Chinese).
Zheng X M. Monitoring Oriental Migratory Locust damage based on multi-platform remote sensing techniques. Hangzhou: Zhejiang University, 2019, 23–26 (In Chinese).
Song P, Zheng X, Li Y, Zhang K and Wang X. Estimating reed loss caused by Locusta migratoria manilensis using UAV-based hyperspectral data. Science of The Total Environment, 2020; 719: 137519.
Ghosh S, Roy A. Desert Locust in India: The 2020 invasion and associated risks. EcoEvoRxiv, 2020.
Owidhi M A. Climate Change and Agriculture in Kenya. Sustainable Bioresource Management, 2020.
Bag, H. and Bhoi, L. Desert Locust and Climate Change: A Risk for Agriculture. Biotica Research Today, 2020; 802–804.
Park, J, Ryu K. Variation Characteristics of Vegetation Index(NDVI) Using AVHRR Images and Spectral Reflectance Characteristics. Journal of Environmental Ences, 2005; 19(1): 90–96.
Zhou G, Wang H and Sun Y, et al. Lithologic classification using multilevel spectral characteristics. Journal of Applied Remote Sensing, 2019; 13(1): 1–12.
Tahir M N, Naqvi S Z A, Lan Y B, Zhang Y L, Wang Y K, Afzal M, et al. Real time monitoring chlorophyll content based on vegetation indices derived from multispectral UAVs in the kinnow orchard. Int J Precis Agric Aviat, 2018; 1(1): 24–31.
Tahir M N, Lan Y B, Zhang Y L, Wang Y K, Faisal N, Shah M A A, et al. Real time estimation of leaf area index and groundnut yield using multispectral UAV. Int J Precis Agric Aviat, 2020; 3(1): 1–6.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.