Comparison of water stress coefficient using three alternative canopy temperature-based indices
Abstract
Abstract: In this study three crop canopy temperature-based water stress indices, standard deviation of the distribution of canopy temperature (CTSD), the ratio of canopy temperature of non-stressed to stressed canopy (Tc–ratio) and Degrees Above Non-Stressed (DANS), were tested as the substitute of water stress coefficient (Ks) for maize crop water use estimation. Thermal imagery was taken from maize under various levels of deficit irrigation at different crop growth stages in 2015 and 2016 growing seasons. The Expectation-Maximization algorithm was used to estimate the canopy temperature distribution from thermal imagery under a range of crop coverage and water stress conditions. CTSD, Tc–ratio and DANS were calculated from the extract canopy temperature and converted to water stress coefficient denoted as Ks–CTSD, Tc–ratio, and Ks–DANS. Crop transpiration estimated using three water stress coefficients were compared with sap flow measurements in 2015. The results further confirmed that CTSD responded well to irrigation events (timing and depth) on crops with water stress and was significantly correlated to leaf water potential and soil water deficit, especially when stress level was above moderate. Ks–CTSD was more sensitive to soil water deficit than Tc–ratio and Ks–DANS. Crop transpiration estimated using Ks–CTSD preformed the best among all methods when compared with sap flow measurements (R2_adj =0.58, relative absolute error =0.63, and root mean square error =0.87 mm day-1). Nash-Sutcliffe coefficient of 0.61 indicates the performance of the prediction model is sufficient and satisfactory. The canopy temperature-based index, CTSD, is easy to acquire from high resolution thermal imagery from remote sensing platforms, such as ground and unmanned aerial vehicles. It has a strong application potential to improve crop water stress detection and crop water use estimation for irrigation scheduling.
Keywords: canopy temperature, CTSD, maize, water stress, thermal, soil water deficit
DOI:Â 10.33440/j.ijpaa.20200302.78
Â
Citation: Zhang H, Zhang L Y, Niu Y X, Han M, Yemoto K.  Comparison of water stress coefficient using three alternative canopy temperature-based indices.  Int J Precis Agric Aviat, 2020; 3(2): 28–34.
Full Text:
PDFReferences
Funk, C. C., M. E. Brown. Declining global per capita agricultural production and warming oceans threaten food security. Food Security, 2009; 1(3): 271–289. DOI: 10.1007/s12571-009-0026-y
Xu, X., M. Zhang, J. Li, Z. Liu, Z. Zhao, Y. Zhang, S. Zhou, and Z. Wang. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China plain. Field Crops Research, 2018; 221: 219–227. doi: 10.1016/j.fcr.2018.02.011
Tang, J., W. Han, and L. Zhang. UAV multispectral imagery combined with the FAO-56 dual approach for maize evapotranspiration mapping in the north China Plain. Remote Sensing, 2019; 11(21): 2519. doi: 10.3390/rs11212519
Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO, Rome, 1998; 300(9): D05109.
Er-Raki, S., A. Chehbouni, and B. Duchemin. Combining satellite remote sensing data with the FAO-56 dual approach for water use mapping in irrigated wheat fields of a semi-arid region. Remote Sensing, 2010; 2(1): 375–387. doi: 10.3390/rs2010375
Er-Raki, S., A. Chehbouni, N. Guemouria, B. Duchemin, J. Ezzahar, and R. Hadria. Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agricultural Water Management, 2007; 87(1): 41–54. doi: 10.1016/ j.agwat.2006.02.004
Tasumi, M. and R. G. Allen. Satellite-based et mapping to assess variation in ET with timing of crop development. Agricultural Water Management, 2007; 88(1-3): 54–62. doi: 10.1016/j.agwat.2006.08.010
Zhang, H., R. G. Anderson, and D. Wang. Satellite-based crop coefficient and regional water use estimates for hawaiian sugarcane. Field Crops Research, 2015; 180: 143–154. doi: 10.1016/j.fcr.2015.05.023
Tanner, C. B. Plant temperatures. Agronomy Journal, 1963; 55(2): 210–211. doi: 10.2134/agronj1963.00021962005500020043x
Clawson, K. L., R. D. Jackson, and P. J. Pinter. Evaluating plant water stress with canopy temperature differences. Agronomy Journal, 1989; 81(6): 858–863. doi: 10.2134/agronj1989.00021962008100060004x
Gerhards, M., M. Schlerf, U. Rascher, T. Udelhoven, R. Juszczak, G. Alberti, F. Miglietta, and Y. Inoue. Analysis of airborne optical and thermal imagery for detection of water stress symptoms. Remote Sensing, 2018; 10(7): 1139. doi: 10.3390/rs10071139
Idso, S. B., R. D. Jackson, P. J. P. Jr, R. J. Reginato, and J. L. Hatfield. Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 1981; 24(1): 45–55. doi: 10.1016/ 0002-1571(81)90032-7
Han, M., H. Zhang, J. L. Chávez, L. Ma, T. J. Trout, and K. C. DeJonge. Improved soil water deficit estimation through the integration of canopy temperature measurements into a soil water balance model. Irrigation Science, 2018; 36(3): 187–201. doi: 10.1007/s00271-018-0574-z
Zhang, H., M. Han, J. Chávez, and Y. B. Lan. Improvement in estimation of soil water deficit by integrating airborne imagery data into a soil water balance model. International Journal of Agricultural and Biological Engineering, 2017; 10: 37–46. DOI: 10.3965/j.ijabe.20171003.3081
Bellvert, J., K. Adeline, S. Baram, L. Pierce, B. Sanden, and D. Smart. Monitoring crop evapotranspiration and crop coefficients over an almond and pistachio orchard throughout remote sensing. Remote Sensing, 2018; 10(12): 2001. doi: 10.3390/rs10122001
Bausch, W., T. Trout, and G. Buchleiter. Evapotranspiration adjustments for deficitâ€irrigated corn using canopy temperature: A concept. Irrigation and drainage, 2011; 60(5): 682–693. doi: 10.1002/ird.601
Taghvaeian, S., L. Comas, K. C. DeJonge, and T. J. Trout. Conventional and simplified canopy temperature indices predict water stress in sunflower. Agricultural Water Management, 2014; 144: 69–80. doi: 10.1016/ j.agwat.2014.06.003
Kullberg, E.G., K.C. DeJonge, and J.L. Chávez. Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients. Agricultural Water Management, 2017; 179: 64–73. DOI: 10.1016/ j.agwat.2016.07.007
Han, M., H. Zhang, K. C. DeJonge, L. H. Comas, and T. J. Trout. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agricultural Water Management, 2016; 177: 400–409. doi: 10.1016/j.agwat.2016.08.031
Zhang, Z., J. Bian, W. Han, Q. Fu, S. Chen, and T. Cui. Cotton moisture stress diagnosis based on canopy temperature characteristics calculated from uav thermal infrared image. Nongye Gongcheng Xuebao/ Transactions of the Chinese Society of Agricultural Engineering, 2018; 34(15): 77–84. DOI: 10.11975/j.issn.1002-6819.2018.15.010
Allen, R. G., I. A. Walter, R. L. Elliott, T. A. Howell, D. Itenfisu, M. E. Jensen, and R. L. Snyder. The ASCE standardized reference evapotranspiration equation. The ASCE Standardized Reference Evapotranspiration Equation, 2005.
Jensen, M. E. and R. G. Allen. Evaporation, evapotranspiration, and irrigation water requirements. American Society of Civil Engineers.
Trout, T. J., L. F. Johnson, and J. Gartung. Remote sensing of canopy cover in horticultural crops. HortScience, 2008; 43(2): 333–337. doi: 10.21273/HORTSCI.43.2.333
Trout, T. J. and W. C. Bausch. USDA-ARS colorado maize water productivity data set. Irrigation Science, 2017; 35(3): 241–249. doi: 10.1007/s00271-017-0537-9
Team, R. C. R: A language and environment for statistical computing, 2013.
Benaglia, T., D. Chauveau, D. R. Hunter, and D. S. Young. Mixtools: An R package for analyzing finite mixture models. Journal of Statistical Software, 2009; 32(6): 1–29. http://dx.doi.org/10.18637/jss.v032.i06
Meron, M., V. Alchanatis, Y. Cohen, and J. Tsipris. Aerial thermography
for crop stress evaluation - a look into the state of the technology, in Precision agriculture’13. 2013, Springer. p. 177–183.
Sakuratani, T. A heat balance method for measuring water flux in the stem of intact plants. Journal of Agricultural Meteorology, 1981; 31(1): 9–17. doi: 10.2480/agrmet.37.9
Han, M., H. Zhang, K. C. DeJonge, L. H. Comas, and S. Gleason. Comparison of three crop water stress index models with sap flow measurements in maize. Agricultural Water Management, 2018; 203: 366–375. doi: 10.1016/j.agwat.2018.02.030
Nash, J. E. and J. V. Sutcliffe. River flow forecasting through conceptual models part i — a discussion of principles. Journal of Hydrology, 1970; 10(3): 282–290. doi: 10.1016/0022-1694(70)90255-6
DeJonge, K. C., S. Taghvaeian, T. J. Trout, and L. H. Comas. Comparison of canopy temperature-based water stress indices for maize. Agricultural Water Management, 2015; 156: 51–62. DOI: 10.1016/j.agwat.2015.03.023
Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 2007; 50(3): 885–900. doi: 10.13031/2013.23153
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.