Key technologies for testing and analyzing aerial spray deposition and drift: A comprehensive review

Ruirui Zhang, Liping Chen, Yao Wen, Qing Tang, Longlong Li

Abstract


Abstract: The technologies for testing and analyzing aerial spray deposition and drift serve as the tools and foundational technologies for spray deposition and drift modeling, deposition and drift control, and the development of aerial spray equipment.  These technologies can be categorized into four types by comprehensively considering their testing analysis methods, analysis objects, and application technologies: sampling, laboratory simulation, computer simulation modeling, and new analysis technologies.  With regard to sampling analysis technologies, this study mainly analyzed the water-sensitive paper (WSP) sampling testing method, tracer testing method, combined WSP and tracer testing method, as well as the electronic information technologies that have been widely used and rapidly developed in recent years.  With respect to the laboratory simulation analysis technologies, this paper elaborates on the applications of laser particle size measurement technology and instrument based on the laser diffraction principle, particle image velocimetry technology and instrument, phase doppler interferometer based on laser scattering principle, and other spray measurement technologies.  In case of computational modeling simulation analysis technologies, this paper mainly expounds the spray deposition model analysis and research methods based on the Gaussian plume, Lagrange, statistical, and computational fluid dynamics (CFD) models.  Additionally, the paper describes the applications of LIDAR, thermal infrared imaging, and other technologies to the analysis of spray deposition.  Electronic technology, computer technology, and other information technologies are being used more widely for analyzing aerial spray deposition, and have become a development trend in recent years.  The instruments rapid measurement of spray deposition in the field and the real-time accurate prediction models for spray drift are in high demand.  The instrument for rapid in-field measurement should be compact, exhibit good portability and convenience of use in the field, and guarantee high measurement accuracy.  The spray deposition and drift mechanisms are relatively well clarified, and the use of advanced technologies to develop practical instrument is the main work of future research in this area.

Keywords: aerial application, deposit measurement, drift monitor, plant protection

DOI: 10.33440/j.ijpaa.20200302.80

 

Citation: Zhang R R, Chen L P, Wen Y, Tang Q, Li L L.  Key technologies for testing and analyzing aerial spray deposition and drift: A comprehensive review.  Int J Precis Agric Aviat, 2020; 3(2): 13–27.


Full Text:

PDF

References


Zhou Z Y, Ming R, Zang Y, He X G, Luo X W, Lan Y B. Development status and countermeasures of agricultural aviation in China. Transactions of the CSAE, 2017; 33(20): 1–13. doi: 10.11975/ j.issn.1002-6819.2017.20.001.

Zhang D Y, Lan Y B, Chen L P, Wang X, Liang D. Current status and future trends of agricultural aerial spraying technology in China. Transactions of the CSAM, 2014; 45(10): 53–59. doi: 10.6041/ j.issn.1000-1298.2014.10.009.

Analysis on the current situation and trend of plant protection UAVs in China in 2019, https://www.81uav.cn/uav-news/201910/20/64268.html.

Wen S, Han J, Lan Y B, Yin X C, Lu Y H. Influence of wing tip vortex on drift of single rotor plant protection unmanned aerial vehicle. Transactions of the CSAM, 2018; 49(8): 127–136. doi: 10.6041/j.issn.1000-1298.2018.08.015.

Li L L, Liu Y J, He X K, Song J L, Zeng A J, Wang Z C, Li T. Assessment of spray deposition and losses in the apple orchard from agricultural unmanned aerial vehicle in China. 2018 ASABE Annual International Meeting, Paper No. 1800504.

Chen Z Y, Wu Y Q. The Elementary Study Of Sprayin G Droplets With Filter Paper Ratio-Assured Methods. Journal of Shanxi Agricultural University, 1996; 16(4): 422–425.

Qiu J, Zheng J Q, Zhou H P, Yang J F. Summarization of Droplet Size Determination and Treatment Methods. Forestry Machinery & Woodworking Equipment, 1999; (07): 10–12.

Zhu H, Salyani M, Fox R D. A portable scanning system for evaluation of spray deposit distribution. Computers and Electronics in Agriculture, 2011; 76(1): 38–43. doi: 10.1016/j.compag.2011.01.003.

Xu G, Chen L P, Zhang R R. An image processing system for evaluation of aerial application quality. Proceedings of the 2016 International Conference on Intelligent Information Processing, Wuhan, China, 2016.

Ferguson J C, Chechetto R G, O'Donnell C C, Fritz B K., Hoffmann W C, Coleman, C E, et al. Assessing a novel smartphone application - SnapCard, compared to five imaging systems to quantify droplet deposition on artificial collectors. Computers and Electronics in Agriculture, 2016; 128: 193–198. doi: 10.1016/j.compag.2016.08.022.

Nansen C, Ferguson J C, Moore J, Groves L, Emery R, Garel N, et al. Optimizing pesticide spray coverage using a novel web and smartphone tool, SnapCard. Agronomy for Sustainable Development, 2015; 35(3):1075–1085. doi: 10.1007/s13593-015-0309-y.

Machado B B, Spadon G, De Arruda M D, Goncalves W N, De Carvalho A C, Rodriguesjr J F. A smartphone application to measure the quality of pest control spraying machines via image analysis. In Proceedings of Symposium on Applied Computing 2018, New York, USA, 2018.

R.D. Fox, R.C. Derksen, J.A. Cooper, C.R. Krause, and H.E. Ozkan. Visualn and image system measurement of spray deposits using water sensitive paper. Applied Engineering In Agriculture, 2003; 19(5), 549–552. doi: 10.13031/2013.15315.

Cunha M, Carvalho C, Marcal A R S. Assessing the ability of image processing software to analyse spray quality on water-sensitive papers used as artificial targets. Biosystems Engineering, 2012; 111(1): 11–23. doi: 10.1016/j.biosystemseng.2011.10.002.

Sharp R B. Spray deposit measurement by fluorescence. Pest Management Science, 1974; 5(2): 197–209. doi: 10.1002/ps.2780050211.

Bradley K. F, Hoffmann W C, Jank P. A Fluorescent Tracer Method for Evaluating Spray Transport and Fate of Field and Laboratory Spray Applications. Journal of ASTM International, 2011; 8(3): 1–9. doi: 10.1520/JAI103619.

Torrent X, Garcerá C, Moltó E, Chueca P, Abad R, Grafulla, C, et al. Comparison between standard and drift reducing nozzles for pesticide application in citrus: Part I. Effects on wind tunnel and field spray drift. Crop Protection, 2017; 96: 130–143. doi: 10.1016/j.cropro.2017.02.001.

Richardson B, Rolando C A, Somchit C, Dunker C, Strand T M, Kimberley M O. Swath pattern analysis from a multi-rotor unmanned aerial vehicle configured for pesticide application. Pest Management Science, 2019; 76(4): 1282–1290. doi: 10.1002/ps.5638.

Huang Y, Thomson S J, Ortiz B V, Reddy K N, Ding W, Zablotowicz R M, et al. Airborne remote sensing assessment of the damage to cotton caused by spray drift from aerially applied glyphosate through spray deposition measurements. Biosystems Engineering, 2010; 107(3): 212–220. doi: 10.1016/j.biosystemseng.2010.08.003.

Wen S, Zhang Q, Deng J, Lan Y, Yin X, Shan J. Design and Experiment of a Variable Spray System for Unmanned Aerial Vehicles Based on PID and PWM Control. Applied Sciences, 2018; 8(12): 2482. doi: 10.3390/ app8122482.

Lou Z X, Xin F, Han X Q, Lan Y B, Duan T Z, Fu W. Effect of Unmanned Aerial Vehicle Flight Height on Droplet Distribution, Drift and Control of Cotton Aphids and Spider Mites. Agronomy, 2018; 8(9): 187–200. doi: 10.3390/agronomy8090187.

Salyani M, Serdynski J. Development of a sensor for spray deposition assessment. Transactions of the ASAE, 1990; 33(5): 1464–1468. doi: 10.13031/2013.31494.

Crowe T G, Downey D, Giles D K. Digital device and technique for sensing distribution of spray deposition. Transactions of the ASAE, 2005; 48(6): 2085–2093. doi: 10.13031/2013.20085.

Zhang R R, Chen L P, Lan Y B, Xu G, Kan J, Zhang D Y. Development of a Deposit Sensing System for Aerial Spraying Application. Transactions of the CSAM, 2014; 45(8): 123–127. doi: 10.6041/ j.issn.1000-1298.2014.08.020.

Kesterson M A, Luck J D, Sama M P. Development and Preliminary Evaluation of a Spray Deposition Sensing System for Improving Pesticide Application. Sensors, 2015; 15(12): 31965–31972. doi: 10.3390/ s151229898.

Wu Y L, Qi L J, Zhang Y, Gao C H, Li S, Elizabeth M. Design and experiment of pesticide droplet deposition detection system based on principle of standing wave ratio. Transactions of the CSAE, 2017; 33(15): 64–71. doi: 10.11975/j.issn.1002-6819.2017.15.008.

Sun C D, Qiu W, Ding W M, Gu J B. Design and experiment of a real-time droplet accumulating mass measurement system. Transactions of the ASABE, 2017; 60(3): 615–624. doi: 10.13031/trans.11715.

Yang W, Hao Z Y, Li M Z, Zhang X. Detecting system design of droplet deposition on fruit leaves. Transactions of the CSAM,2017; 48(S1): 8–14. doi: 10.6041/j.issn.1000-1298.2017.S0.002.

Foqué D, Dekeyser D, Langenakens J, Nuyttens D. Evaluating the usability of a leaf wetness sensor as a spray tech monitoring tool. International Advances in Pesticide Application. 2018, Brighton, UK, 2018.

Liljedahl, L A., Strait, J. Spray Deposits Measured Rapidly. Agricultural Engineering, 1959; 40(6): 332–335.

Whitney, R. W., Roth, L. O. String Collectors for Spray Pattern Analysis. Transactions of the ASAE, 1985; 28(6): 1749–1753. doi: 10.13031/ 2013.32512.

Bae Y, Koo Y M. Flight attitudes and spray patterns of a roll-balanced agricultural unmanned helicopter. Applied Engineering in Agriculture, 2013; 29(5): 675–682. doi: 10.13031/aea.29.10059.

Zhang R R, Wen Y, Yi T C, Chen L P, Xu G. Development and application of aerial spray droplets deposition performance measurement system based on spectral analysis technology. Transactions of the CSAE, 2017; 33(24): 80–87. doi: 10.11975/j.issn.1002-6819.2017.24.011.

Wen Y, Zhang R R, Chen L P, Huang Y B, Yi T C, Xu G, et al. A new spray deposition pattern measurement system based on spectral analysis of a fluorescent tracer. Computers and Electronics in Agriculture, 2019; 160: 14–22. doi: 10.1016/j.compag.2019.03.008.

https://www.malvernpanalytical.com.cn/products/product-range/spraytec/accessories/extraction-accessory/

http://archive.sympatec.com/CN/LaserDiffraction/HELOS.html

https://www.oxfordlasers.com/laser-imaging/particle-size-measurement

Kirk, I. Measurement and prediction of helicopter spray nozzle atomization. Transactions of the ASAE, 2002; 45(1): 27–37. doi: 10.13031/2013.7866.

Fritz B K, Hoffmann W C , Kruger G R , Henry R S, Czaczyk Z. Comparison of drop size data from ground and aerial application nozzles at three testing laboratories. Atomization & Sprays, 2014; 24(2): 181–192. doi: 10.1615/AtomizSpr.2013009668.

Hewitt A J. Droplet size spectra classification categories in aerial application scenarios. Crop Protection, 2008; 27(9): 1284–1288. doi: 10.1016/j.cropro.2008.03.010.

Nuyttens D, Baetens K, De Schampheleire M, Sonck B. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosystems Engineering, 2007; 97(3): 333–345. doi: 10.1016/j.biosystemseng.2007. 03.001.

Tang Q, Zhang R R, Chen L P, Deng W, Xu M, Xu G, et al. Numerical simulation of the downwash flow field and droplet movement from an unmanned helicopter for crop spraying. Computers and electronics in agriculture, 2020; 174: 105468. doi: 10.1016/j.compag.2020.105468.

Tang Q , Zhang R R , Chen L P, Xu M, Yi T C, Zhang B. Droplets movement and deposition of an eight-rotor agricultural UAV in downwash flow field. International Journal of Agricultural and Biological Engineering, 2017; 10(3): 47–56. doi: 10.3965/j.ijabe.20171003.3075.

Teske M E, Thistle H W, Hewitt A J, Kirk I W, Dexter R W, Ghent J. Rotary atomizer drop size distribution database. Transactions of the ASABE, 2005; 48(3): 917–921. doi: 10.13031/2013.18496.

Hewitt A J, Johnson D R, Fish J D, Hermansky C G, Valcore D L. Development of the Spray Drift Task Force database for aerial applications. Environmental Toxicology & Chemistry, 2002; 21(3): 648–658. doi: 10.1002/etc.5620210326.

Fritz B K, Hoffmann W C, Lan Y B. Evaluation of the EPA Drift Reduction Technology (DRT) low-speed wind tunnel protocol. Journal of Astm International, 2009; 6(4): 12. doi: 10.1520/JAI102129.

Hoffmann W C, Fritz B K, Lan Y. Evaluation of a proposed drift reduction technology high-speed wind tunnel testing protocol. Journal of Astm International, 2009; 6(4): 11. doi: 10.1520/JAI102122.

EPA. User’s guide for the industrial source complex (isc3) dispersion models: Volume 2. description of model algorithms, 1995.

Waldron A W. An engineering approach to the problem of maximizing zectran particle capture on spruce budworms in a densse coniferous forest. US Army Dugway Proving Ground, 1975.

Grim B S, Barry J W. A canopy penetration model for aerially disseminated insecticide spray released above coniferous forests. US Army Dugway Proving Ground, 1975.

Dumbauld R K, Rafferty J E, Bjorklund J R. Prediction of spray behavior above and within a forest canopy. USDA Forest Service, 1977.

Dumbauld R K, Bjorklund J R, Saterlie S F. Computer models for predicting aircraft spray dispersion and deposition above and within forest canopies: User’s manual for the fscbg computer program. U.S. Department of Agriculture Forest Service, 1980.

Teske M E, Bowers J F, Rafferty J E, Barry J W. FSCBG: an aerial spray dispersion model for predicting the fate of released material behind aircraft. Environmental Toxicology and Chemistry, 1993; 12(3): 453–464. doi: 10.1002/etc.5620120307.

Teske M E. Vortex interactions and decay in aircraft wakes. ii: The vortex wake computer program. user manual. ARAP, 1976.

Teske M E. Vortex interactions and decay in aircraft wakes. iii: The vortex wake computer program. programmer manual. ARAP, 1976.

Bilanin A J, Teske M E. Numerical studies of the deposition of material released from fxed and rotary wing aircraft. Langley research center, NASA, 1984.

Bilanin A J, Teske M E, Barry J W, Ekblad R B. AGDISP: The aircraft spray dispersion model, code development and experimental validation. Transactions of the ASAE, 1989; 32(1): 327–334. doi: 10.13031/ 2013.31005.

Fritz B K. Meteorological effects on deposition and drift of aerially applied sprays. Transactions of the ASABE, 2006; 49(5): 1295–1301. doi:10.13031/2013.22038.

Cooper J F, Smith D N, Dobson H M. An evaluation of two feld samplers for moniotring spray drift. Crop Protection, 1996; 15(3): 249–257. doi: 10.1016/0261-2194(95)00113-1.

Kirk I W. Aerial spray drift from different formulations of glyphosate. Transactions of the ASAE, 2000; 43(3): 555–559. doi:10.13031/ 2013.2735.

Fox R D, Brazee R D, Reichard D L, Hall F R. Downwind residue from air spraying of a dwarf apple orchard. Transactions of the ASAE, 1990; 36(4): 333–340. doi: 10.13031/2013.31445.

Richardson B, Thistle H W. Measured and predicted aerial spray interception by a young pinus radiate canopy. Transactions of the ASABE, 2006, 49(1): 15–23. doi: 10.13031/2013.20230.

Threadgill E D, Smith D B. Effects of physical and meteorological parameters on the drift of controlled-size droplets. Transactions of the ASAE, 1975; 18(1): 51–56. doi: 10.13031/2013.36523.

May K R, Clifford R. The impaction of aerosol particles on cylinders, spheres, ribbons and discs. Annal Occup Hyg, 1967; 10: 83–95. doi: 10.1093/annhyg/10.2.83.

Spillman J J. Spray impactions, retention and adhesions: An introduction to basic characteristics. Pestic Sci, 1984; 15(2): 97–106. doi: 10.1002/ ps.2780150202.

Schou W C, Forster W A, Mercer G N, Teske M E, Thistle H W. Building canopy retention into AGDISP: preliminary models and results. Transactions of the ASABE, 2012; 55(6): 2059–2066. doi: 10.13031/ 2013.42493.

Teske M E, Bird S L, Esterly D M. AgDrift®: A model for estimating nearâ€field spray drift from aerial applications. Environmental Toxicology and Chemistry, 2002; 21(3): 659–671. doi: 10.1002/ etc.5620210327.

Zhu H, Reichard D L, Fox R D, Brazee R D, Ozkan H E. Simulation of drift of discrete sizes of water droplets from feld sprayers. Transactions of the ASAE, 1994; 37(5): 1401–1407. doi: 10.13031/2013.28220.

Hewitt A J. Atomization models. International Conference on Pesticide Application for Drift Management. Hawaii, 2004.

Hermansky C G. A regression model for estimating spray quality from nozzle, application and physical property data. ILASS America 11th Annual Conference. Sacremento, CA, 1998.

Delele M A, Jaeken P, Debaer C, Baetens K, Endalew A M, Ramon H, et al. CFD prototyping of an air-assisted orchard sprayer aimed at drift reduction. Computers and Electronics in Agriculture, 2007; 55(1): 16–27. doi: 10.1016/j.compag.2006.11.002.

Tsay, J. R., L. S. Liang, and L. H. Lu. Evaluation of an air-assisted boom spraying system under a no-canopy condition using CFD simulation. Transactions of the ASAE, 2004; 47(6): 1887–1897. doi: 10.13031/ 2013.17797.

Endalew A M, Debaer C, Rutten N, Vercammen J, Delele M A, Ramon H, et al. A new integrated CFD modelling approach towards air-assisted orchard spraying. Part I. Model development and effect of wind speed and direction on sprayer airflow. Computers and Electronics in Agriculture, 2010; 71(2): 128–136. doi: 10.1016/j.compag.2009.11.005.

Endalew A M, Debaer C, Rutten N, Vercammen J, Delele M A, Ramon H, et al. A new integrated CFD modelling approach towards air-assisted orchard spraying—Part II: Validation for different sprayer types. Computers and Electronics in Agriculture, 2010; 71(2): 137–147. doi: 10.1016/j.compag.2009.11.007.

Endalew A M , Hendrickx N , Goossens T, Nuyttens D, Verboven P. An Integrated Approach to Investigate the Orchard Spraying Process: Towards a CFD Model Incorporating Tree Architecture. Asabe International Meeting, St. Joseph, Mich, USA, 2010.

Duga A T, Delele M A, Ruysen K, Dekeyser D, Nuyttens D, Bylemans D, et al. Development and validation of a 3D CFD model ofdrift and its application to air-assisted orchardsprayers. Biosystems Engineering, 2016; 154: 62–75. doi: 10.1016/j.biosystemseng.2016.10.010.

Baetens K, Nuyttens D, Verboven P, Schampheleire M D, Nicola B, Ramon H. Predicting drift from field spraying by means of a 3D computational fluid dynamics model. Computers and Electronics in Agriculture, 2007; 56(2): 161–173. doi: 10.1016/j.compag.2007.01.009.

Dekeyser, D, Duga, A. T, Verboven, P, Endalew, A. M, Hendrickx, N, Nuyttens, D. Assessment of orchard sprayers using laboratory experiments and computational fluid dynamics modelling. Biosystems Engineering, 2013; 114(2): 157–169. doi: 10.1016/j.biosystemseng.2012. 11.013.

Ryan, S. D, Gerber, A. G, Holloway, A. A computational study of sprays produced by rotary cage atomizers. Transactions of the ASABE, 2012; 55(4): 1133–1148. doi: 10.13031/2013.42232.

Ryan, S. D, Gerber, A. G, Holloway, A. A computational study on spray dispersal in the wake of an aircraft. Transactions of the ASABE, 2013; 56(3): 847–868. doi: 10.13031/trans.56.10022.

Zhang B, Tang Q, Chen L P, Zhang R R, Xu M. Numerical simulation of spray drift and deposition from a crop spraying aircraft using a CFD approach. Biosystems Engineering, 2018; 166: 184–199. doi: 10.1016/ j.biosystemseng.2017.11.017.

Zhang B, Tang Q, Chen L P, Xu M. Numerical simulation of wake vortices of crop spraying aircraft close to the ground. Biosystems Engineering, 2016; 145: 52–64. doi: 10.1016/j.biosystemseng.2016.02.014.

Wang Z C, He X K, Li T, Huang M Y, Zhang Y P, Xu L, Deng X J. Evaluation method of pesticide droplet drift based on laser imaging. Transactions of the CSAE, 2019; 35(9): 73–79. doi: 10.11975/ j.issn.1002-6819.2019.09.009.

Zhang J, He X K, Song J L, Zeng A J, Liu Y J, Li X F. Influence of spraying parameters of unmanned aircraft on droplets deposition. Transactions of the CSAM, 2012; 43(12): 94–96. doi: 10.6041/ j.issn.1000-1298.2012.12.017.

Zhang H H, Lan Y B, Lacey R, Hoffmann W C, Martin D E, Fritz B, et al. Ground-based spectral reflectance measurements for evaluating the efficacy of aerially- applied glyphosate treatments. Biosystems Engineering, 2010; 107(1): 10–15. doi: 10.1016/j.biosystemseng.2010. 06.006.

Hoff R M, Mickle R E, Froude F A. A rapid acquisition Lidar system for aerial spray di-agnostics. Transactions of the ASAE, 1989; 32(5): 1523–1528. doi: 10.13031/2013.31183.

Stoughton T E, Miller D R, Yang X, Ducharme K M. A comparison of spray drift predic-tions to lidar data. Agricultural & Forest Meteorology, 1997; 88(1–4):15–26. doi: 10.1016/s0168-1923(97)00056-7.

Miller D R, Salyani M, Hiscox A L. Remote measurement of spray drift from orchard sprayers using LIDAR. In Proceedings of the American Society of Agricultural and Biological Engineers, Las Vegas, NV, USA, 27–30 July 2003; Annual Meeting Paper No.031093.

Gil E, Llorens J, Llop J, Fabregas X, Gallart M. Use of a terrestrial LIDAR sensor for drift detection in vineyard spraying. Sensors, 2013; 13(1): 516–534. doi: 10.3390/s130100516.

Zhang Z. Modeling and system development of laser measurement spray drift estimation model. Taian: ShanDong Agricultural University, 2019.

Zheng Y J, Yang S H, Lan Y B, Client H. , Zhao C J, Chen L P, Liu X X, Tan Y. A novel detection method of spray droplet distribution based on LIDARs. International Journal of Agricultural and Biological Engineering, 2017; 10(4): 54–65. doi: 10.25165/j.ijabe.20171004.3118.

Gregorio E, Rosell-Polo J R, Sanz R, Rocadenbosch F, Solanelles F, Garcera C, et al. LIDAR as an alternative to passive collectors to measure pesticide spray drift. Atmospheric Environment, 2014; 82: 83–93. doi: 10.1016/j.atmosenv.2013.09.028.

Gregorio E, Rocadenbosch F, Sanz R, Rosellpolo J R. Eye-Safe Lidar System for Pesticide Spray Drift Measurement. Sensors, 2015; 15(2): 3650–3670. doi: 10.3390/s150203650.

Gregorio E, Torrent X, Martí S P D. Measurement of Spray Drift with a Specifically Designed Lidar System. Sensors, 2016; 16(4): 1–15. doi: 10.3390/s16040499.

Gregorio E, Torrent X, Planas S, Rosellpolo J R. Assessment of spray drift potential reduction for hollow-cone nozzles: Part 2. LiDAR technique. The Science of the Total Environment, 2019; 687(15): 967–977. doi: 10.1016/j.scitotenv.2019.06.151.

Zhao C J, Zheng W G, Dong D M, Zhao X D, Shen C J, Wu W B, et al. Telemetering system and method for testing chemical spray drift trend of aerial pesticide application. Chinese Patent, CN201110209409.0, 2013-08-21.

Zhang R R, Chen L P, Zhang Z, Yi T C, Li L L, Tang Q. Monitoring system and method for spray drift tendency of aerial spraying application. Chinese Patent, CN201910104804.9, 2019-07-12. (in Chinese)

Platt U, Perner D, Pätz H W. Simultaneous measurements of atmospheric CH2, O3 and NO2 by differential optical absorption. Journal of Geophysical Research 1979; 84: 6329–6335. doi: 10.1029/ JC084iC10p06329.

Rothman L S, Rinsland C P, Goldman A, Massie S T, Edwards D P, Flaud J M, et al. The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 Edition. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998; 60(5): 665–710. doi: 10.1016/s0022-4073(98)00078-8.

Kira O, Dubowski Y, Linker R. Reconstruction of passive open-path FTIR ambient spectra using meteorological measurements and its application for detection of aerosol cloud drift. Optics Express, 2015; 23(15): A916–A929. doi: 10.1364/oe.23.00a916.

Kira O, Linker R, Dubowski Y. Estimating drift of airborne pesticides during orchard spraying using active open path FTIR. Atmospheric Environment, 2016; 142: 264–270. doi: 10.1016/j.atmosenv.2016.07.056.

Zhang R R, Wang W J, Zhang M J, Chen L P. Design and development of automatic metering system for aviation plant protection. Journal of Agricultural Mechanization Research, 2017; 6:101–105. doi: 10.13427/ j.cnki.njyi.2017.06.020.

Zhang H, Qi L J, Wu Y L, Liu W W, Chen Z Z. MUSIU E. Spatio-temporal Distribution of Down-wash Airflow for Multi-rotor Plant Protection UAV Based on Porous Model. Transactions of the CSAM, 2019; 50(2): 112–122. doi: 10.6041/j.issn.1000-1298.2019.02.012.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.