Multi-temporal monitoring of leaf area index of rice under different nitrogen treatments using UAV images

Xiaoyue Du, Liang Wan, Haiyan Cen, Shuobo Chen, Jiangpeng Zhu, Hongyan Wang, Yong He

Abstract


Citation: Du X Y, Wan L, Cen H Y, Chen S B, Zhu J P, Wang H Y, He Y.  Multi-temporal monitoring of leaf area index of rice under different nitrogen treatments using UAV images.  Int J Precis Agric Aviat, 2020; 3(1): 7–12.


Full Text:

PDF

References


Jefferies R, Mackerron D. Responses of potato genotypes to drought. II. leaf area index, growth and yield. Annals of Applied Biology, 1993, 122(1): 105–112. doi: 10.1111/j.1744-7348.1993.tb04018.x.

Cen H, Wan L, Zhu J, et al. Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight UAV with dual image-frame snapshot cameras. Plant Methods, 2019, 15(1). doi: 10.1186/s13007-019-0418-8.

Hasan M, Kamal A. Effect of fertilizer on grain yield and grain protein content of wheat. National Science Council of Sri Lanka, 1998, 26(1): 1–8. doi: 10.4038/jnsfsr.v26i1.3079.

Duchemin B, Maisongrande P, Boulet G, et al. A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. Environmental Modelling and Software, 2008, 23(7): 876–892. doi: 10.1016/j.envsoft.2007.10.003.

Li S, Ding X, Kuang Q, et al. Potential of UAV-based active sensing for monitoring rice leaf nitrogen status. Frontiers in Plant Science, 2018, 9, 1834. doi: 10.3389/fpls.2018.01834.

Yao Y, Liu Q, Liu Q, et al. LAI retrieval and uncertainty evaluations for typical row-planted crops at different growth stages. Remote Sensing of Environment, 2008, 112(1): 94–106. doi: 10.1016/j.rse.2006.09.037.

Yue J, Feng H, Jin X, et al. A comparison of crop parameters estimation using images from UAV-mounted snapshot hyperspectral sensor and high-deï¬nition digital camera. Remote Sensing, 2018, 10(7): 1138. doi: 10.3390/rs10071138.

Xu X, Lu J, Zhang N, et al. Inversion of rice canopy chlorophyll content and leaf area index based on coupling of radiative transfer and Bayesian network models. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 185–196. doi: 10.1016/j.isprsjprs.2019.02.013.

Wan L, Li Y, Cen H, et al. Combining UAV-based vegetation indices and image classification to estimate flower number in oilseed rape. Remote Sensing, 2018, 10(9). doi: 10.3390/rs10091484.

Li X, Zhang Y, Luo J, et al. Quantiï¬cation winter wheat LAI with HJ-1CCD image features over multiple growing seasons. International Journal of Applied Earth Observation and Geoinformation, 2016, 44, 104–112. doi: 10.1016/j.jag.2015.08.004.

Dong T, Liu J, Shang J, et al. Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sensing of Environment, 2019, 222, 133–143. doi: 10.1016/j.rse.2018.12.032.

Liang L, Di L, Zhang L, et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sensing of Environment, 2015, 165: 123–134. doi: 10.1016/j.rse.2015.04.032.

Bacour C, Baret F, Béal D, et al. Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: Principles and validation. Remote Sensing of Environment, 2006, 105(4): 313–325. doi: 10.1016/j.rse.2006.07.014.

Jin X, Yang G, Xu X, et al. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sensing, 2015, 7(10): 13251–13272. doi: 10.3390/rs71013251.

Verger A, Vigneau N, Chéron C, et al. Green area index from an unmanned aerial system over wheat and rapeseed crops. Remote Sensing of Environment, 2014, 152: 654–664. doi: 10.1016/j.rse.2014.06.006.

MaitiniyaziMaimaitijiang, AbduwasitGhulam, PahedingSidike, et al. Unmanned aerial system (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 134, 43–58. doi: 10.1016/ j.isprsjprs.2017.10.011.

Zhou X, Zheng H, Xu X, et al. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 246–255. doi: 10.1016/j.isprsjprs.2017.05.003.

Lu N, Zhou J, Han Z, et al. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods, 2019, 15(1). doi: 10.1186/s13007-019-0402-3.

Kanning M, Kühling I, Trautz D, et al. High-resolution UAV-based hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield prediction. Remote Sensing, 2018, 10(12). doi: 10.3390/ rs10122000.

Sona G, Pinto L, Pagliari D, et al. Experimental analysis of different software packages for orientation and digital surface modelling from UAV images. Earth Science Informatics, 2014, 7(2): 97–107. doi: 10.1007/ s12145-013-0142-2.

Duan B, Liu Y, Gong Y, et al. Remote estimation of rice LAI based on Fourier spectrum texture from UAV image. Plant Methods, 2019, 15(1): 1–12. doi: 10.1186/s13007-019-0507-8.

Yi P, Zhu T, Li Y, et al. Remote prediction of yield based on LAI estimation in oilseed rape under different planting methods and nitrogen fertilizer applications. Agricultural & Forest Meteorology, 2019, 271: 116–125. doi: 10.1016/j.agrformet.2019.02.032.

Jordan C F. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 1969, 50(4): 663–666. doi: 10.2307/1936256.

Woebbecke D, Meyer G, Bargen K, et al. Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE, 1995, 38(1): 259–269. doi: 10.13031/ 2013.27838.

Wang Y, Zhang K, Tang C, et al. Estimation of rice growth parameters based on linear mixed-effect model using multispectral images from fixed-wing unmanned aerial vehicles. Remote sensing, 2019, 11, 1371. doi: 10.3390/rs11111371.

Gitelson A, Merzlyak M. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology. B: Biology, 1994, 22(3): 247–252. doi: 10.1016/1011-1344(93)06963-4.

Li W, Niu Z, Chen H, et al. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecological Indicators, 2016, 67: 637–648. doi: 10.1016/j.ecolind.2016.03.036.

Anatoly A, Yoram J, Robert S, et al. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 2002, 80(1): 76–87. doi: 10.1016/s0034-4257(01)00289-9.

Li S, Yuan F, Syed T, et al. Combining color indices and textures of UAV-based digital imagery for rice LAI estimation. Remote Sensing. 2019, 11, 1763. doi: 10.3390/rs11151763.

Liu H, Zhang J, Pan Y, et al. An efficient approach based on UAV orthographic imagery to map paddy with support of field-level canopy height from point cloud data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018: 1–13. doi: 10.1109/JSTARS.2018.2829218.

Kwok T Y. Support vector mixture for classification and regression problems. 2000, 1: 255–258 vol.1. doi: 10.1109/ICPR.1998.711129.

Dai J, Zhang G, Guo P, et al. Classification method of main crops in northern Xinjiang based on UAV visible waveband images. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 130–137. doi: CNKI:SUN:NYGU.0.2018-18-015.

Kaya G T. A hybrid model for classification of remote sensing images with linear SVM and support vector selection and adaptation. IEEE Journal of Selected Topics in Applied Earth Observations &Remote Sensing, 2013, 6(4): 1988–1997. doi: 10.1109/JSTARS.2012.2233463.

Ham J, Chen Y, Crawford M, et al. Investigation of the random forest framework for classification of hyperspectral data. IEEE Transactions on Geoscience & Remote Sensing, 2005, 43(3): 492–501. doi: 10.1109/ tgrs.2004.842481.

Huang G, Zhou H, Ding X, et al. Extreme learning aachine for regression and multiclass classification. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 2012, 42(2): 513–529. doi: 10.1109/ tsmcb.2011.2168604.

Gitelson A, Keydan G, Merzlyak M. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophysical Research Letters, 2006, 33(11): L11402. doi: 10.1029/2006gl026457.


Refbacks

  • There are currently no refbacks.