UAV hyperspectral inversion modeling of rice nitrogen content based on WOA-ELM

Fenghua Yu, Wen Du, Zhonghui Guo, Changxian Zhou, Dingkang Wang, Tongyu Xu

Abstract


Abstract: Nitrogen content is an important indicator of the growth status of the rice in cold region.  It can be obtained in time using UAV hyperspectral remote sensing technology at a regional scale.  This study is based on the remote sensing test data of the rice in precision agriculture aviation team experiment station of Shenyang Agricultural University from 2018.  The method of Sequent Projection Approach (SPA) was used to extract the effective band including 465 nm, 501 nm, 578 nm, 702 nm and 783 nm.  The extracted characteristic band is used as the input, and the inversion models of nitrogen content in rice canopy were established respectively by using the Extreme Learning Machine (ELM), and the Extreme Learning Machine by genetic algorithm (GA-ELM) and by Whale optimization algorithm (WOA-ELM).  The results showed that the precision of the nitrogen content of rice based on the WOA-ELM was better than the inversion model established by ELM and GA-ELM.  The R2 of training data is 0.887, the R2 of test data is 0.880, the RMSE of training data is 0.269, the RMSE of test data is 0.284.  This study provides a certain data support and application basis for the diagnosis of rice nitrogen content in cold region by UAV hyperspectral remote sensing technology in northeastChina.

Keywords: UAV, nitrogen content, rice in cold region, hyperspectral, WOA-ELM

DOI: 10.33440/j.ijpaa.20190202.39.

 

Citation: Yu F H, Du W, Guo Z H, Zhou C X, Wang D K, Xu T Y.  UAV hyperspectral inversion modeling of rice nitrogen content based on WOA-ELM.  Int J Precis Agric Aviat, 2019; 2(2): 43–48.


Full Text:

PDF

References


Tan K Z, Wang S W, Song Y Z, Liu Y, Gong Z P. Estimating nitrogen status of rice canopy using hyperspectral reflectance combined with BPSO-SVR in cold region. Chemometrics Intell Lab Syst, 2018; 172: 68–79. doi: 10.1016/j.chemolab.2017.11.014

Li X P, Ma W D, Chang W, Liang C, Zhao H X, Guo JX, et al. Linkage Disequilibrium Analysis of Rice Sheath Blight Resistance Markers of Rice Grown in the Cold Region of Northeast China. Genetika-Belgrade, 2018; 50(3): 943–58. doi: 10.2298/Gensr1803943l

Kawamura K, Ikeura H, Phongchanmaixay S, Khanthavong P. Canopy Hyperspectral Sensing of Paddy Fields at the Booting Stage and PLS Regression can Assess Grain Yield. Remote Sens, 2018; 10(8): 15. doi: 10.3390/rs10081249

Dayananda S, Astor T, Wijesingha J, Thimappa SC, Chowdappa H D, Mudalagiriyappa, et al. Multi-Temporal Monsoon Crop Biomass Estimation Using Hyperspectral Imaging. Remote Sens, 2019; 11(15): 19. doi: 10.3390/rs11151771

Nutini F, Confalonieri R, Crema A, Movedi E, Paleari L, Stavrakoudis D, et al. An operational workflow to assess rice nutritional status based on satellite imagery and smartphone apps. Comput Electron Agric, 2018; 154: 80–92. doi: 10.1016/j.compag.2018.08.008

Zheng H B, Cheng T, Li D, Yao X, Tian Y C, Cao W X, et al. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice. Front Plant Sci 2018; 9: 13. doi: 10.3389/fpls.2018.00936

Yu F H, Xu T Y, Cao Y L, Yang G J, Du W, Wang S. Models for estimating the leaf NDVI of japonica rice on a canopy scale by combining canopy NDVI and multisource environmental data in Northeast China. Int J Agric Biol Eng, 2016; 9(5): 132–42. doi: 10.3965/ j.ijabe.20160905.2266

Li S Y, Ding X Z, Kuang Q L, Ata-Ul-Karim S T, Cheng T, Liu X J, et al. Potential of UAV-Based Active Sensing for Monitoring Rice Leaf Nitrogen Status. Front Plant Sci, 2018; 9: 14. doi: 10.3389/fpls.2018.01834

Yu F H, Xu T Y, Du W, Ma H, Zhang G S, Chen C L. Radiative transfer models (RTMs) for field phenotyping inversion of rice based on UAV hyperspectral remote sensing. Int J Agric Biol Eng, 2017; 10(4): 150–7. doi: 10.25165/j.ijabe.20171004.3076

Du W, Xu T Y, Yu F H, Chen C L. Measurement of nitrogen content in rice by inversion of hyperspectral reflectance data from an unmanned aerial vehicle. Cienc Rural, 2018; 48(6): 10. doi: 10.1590/ 0103-8478cr20180008

Jay S, Baret F, Dutartre D, Malatesta G, Heno S, Comar A, et al. Exploiting the centimeter resolution of UAV multispectral imagery to improve remote-sensing estimates of canopy structure and biochemistry in sugar beet crops. Remote Sens Environ, 2019; 231: 17. doi: 10.1016/j.rse.2018.09.011

Camino C, González-Dugo V, Hernández P, Sillero J C, Zarcoâ€Tejada PJ. Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture. International Journal of Applied Earth Observation and Geoinformation, 2018; 70: 105–17. doi: 10.1016/j.jag.2018.04.013

Klem K, Zahora J, Zemek F, Trunda P, Tuma I, Novotna K, et al. Interactive effects of water deficit and nitrogen nutrition on winter wheat. Remote sensing methods for their detection. Agric Water Manage, 2018; 210: 171–84. doi: 10.1016/j.agwat.2018.08.004

Lussem U, Bolten A, Menne J, Gnyp M L, Schellberg J, Bareth G. Estimating biomass in temperate grassland with high resolution canopy surface models from UAV-based RGB images and vegetation indices. J Appl Remote Sens, 2019; 13(3): 26. doi: 10.1117/1.Jrs.13.034525

Hashimoto N, Saito Y, Maki M, Homma K. Simulation of Reflectance and Vegetation Indices for Unmanned Aerial Vehicle (UAV) Monitoring of Paddy Fields. Remote Sens, 2019; 11(18): 13. doi: 10.3390/rs11182119

Duan B, Liu Y T , Gong Y, Peng Y, Wu X T, Zhu R S, et al. Remote estimation of rice LAI based on Fourier spectrum texture from UAV image. Plant Methods, 2019; 15(1): 12. doi: 10.1186/s13007-019-0507-8

Shen X, Cao L, Yang B S, Xu Z, Wang G B. Estimation of Forest Structural Attributes Using Spectral Indices and Point Clouds from UAS-Based Multispectral and RGB Imageries. Remote Sens, 2019; 11(7): 24. doi: 10.3390/rs11070800

Abdulridha J, Batuman O, Ampatzidis Y. UAV-Based Remote Sensing Technique to Detect Citrus Canker Disease Utilizing Hyperspectral Imaging and Machine Learning. Remote Sens, 2019; 11(11): 22. doi: 10.3390/rs11111373

Ge X Y, Wang J Z, Ding J L, Cao X Y, Zhang Z P, Liu J, et al. Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring. PeerJ, 2019; 7: 27. doi: 10.7717/ peerj.6926

Madlikova M, Krausova I, Mizera J, Taborsky J, Famera O, Chvatil D. Nitrogen assay in winter wheat by short-time instrumental photon activation analysis and its comparison with the Kjeldahl method. J Radioanal Nucl Chem, 2018; 317(1): 479–86. doi: 10.1007/ s10967-018-5881-6


Refbacks

  • There are currently no refbacks.