Overview of spray nozzles for plant protection from manned aircrafts: Present research and prospective
Abstract
Abstract: Aerial application is a critical component of modern agriculture, and it is crucial for aerial application of pesticides to be environmentally protective and efficacious. The spray nozzles involved in the application process are a vital component in the precise and safe delivery of applied products. This paper reviews and summarizes the state-of-the-art in aviation nozzle technology and the physical processes of nozzle atomization on manned platforms. Highlights are two main aerial nozzle types along with their working principle, the factors that influence atomization performance and new technologies for reducing drift and enhancing application efficiency. Moving forward, the research mainly focused on the development and evaluation of drift-reducing and variable-rate technologies, enhanced atomization models, the impacts of aerial tank mix adjuvants, and non-conventional application technologies (such as electrostatic or pulse-width modulation systems) are likely to have the most significant impact on the aerial application industry. This review provides a summary of the history and advancements in nozzle technologies and encourages further development.
Keywords: aerial application, nozzle, droplet size, atomization performance, drift-reducing
DOI:Â 10.33440/j.ijpaa.20200302.76
Â
Citation: Chen H B, Fritz K B, Lan Y B, Zhou Z Y, Zheng J F. An overview of spray nozzles for plant protection from manned aircrafts: Present research and prospective.  Int J Precis Agric Aviat, 2020; 3(2): 1–12.
Full Text:
PDFReferences
[References]
Wilson C, Tisdell C. Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecological economics, 2001; 39(3): 449–462. doi: 10.1016/S0921-8009(01)00238-5.
Lan Y B, Thomson S J, Huang Y B, Hoffmann W C, Zhang H H. Current status and future directions of precision aerial application for site-specific crop management in the USA. Computers and electronics in agriculture, 2010; 74(1): 34–38. doi: 10.1016/j.compag.2010.07.001.
Richard Glass C, Walters K F A, Gaskell P H, Lee Y C, Thompson H M, Emerson D R, et al. Recent advances in computational fluid dynamics relevant to the modelling of pesticide flow on leaf surfaces. Pest Management Science: formerly Pesticide Science, 2010; 66(1): 2–9. doi: 10.1002/ps.1824.
Lebeau F, Verstraete A, Stainier C, Destain M F. RTDrift: A real time model for estimating spray drift from ground applications. Computers and electronics in agriculture, 2011; 77(2): 161–174. doi: 10.1016/ j.compag.2011.04.009.
Hilz E, Vermeer A W P. Spray drift review: The extent to which a formulation can contribute to spray drift reduction. Crop Protection, 2013; 44: 75–83. doi: 10.1016/j.cropro.2012.10.020.
Oerke E C. Crop losses to pests. The Journal of Agricultural Science, 2006; 144(1): 31–43. https:// doi.org/10.1017/S0021859605005708.
Viret O, Siegfried W, Holliger E, Raisigl U. Comparison of spray deposits and efficacy against powdery mildew of aerial and ground-based spraying equipment in viticulture. Crop Protection, 2003; 22(8): 1023–1032. doi: 10.1016/S0261-2194 (03) 00119-4.
Guler H, Zhu H, Ozkan H E, Derksen R C, Yu Y, Krause C R. Spray characteristics and drift reduction potential with air induction and conventional flat-fan nozzles. Transactions of the ASABE, 2007; 50(3): 745–754. doi: 10.13031/2013.23129.
Huang Y B, Ding W, Thomson S J, Reddy K N, Zablotowicz R M. Assessing crop injury caused by aerially applied glyphosate drift using spray sampling. Transactions of the ASABE, 2012; 55(3): 725–731. doi: 10.13031/2013.41504.
Antuniassi U R, Motta A A B, Chechetto R G, Carvalho F K, Velini E D, Carbonari C A. Spray drift from aerial application. International Advances in Pesticide Application, Aspects of Applied Biology, 2014; 122: 279–284.
Hewitt A J. Droplet size and agricultural spraying, Part 1: Atomization, spray transport, deposition, drift and droplet size measurement techniques. Atomization and Sprays, 1997; 7(3): 235–244. doi: 10.1615/ AtomizSpr.v7.i3.10.
Matthews G A. Pesticide Application Methods, 3. London: Backwell Science, 2000. doi:10.1002/9780470760130.
Dorr G J, Hewitt A J, Adkins S W, Hanan J, Zhang H C, Noller B. A comparison of initial spray characteristics produced by agricultural nozzles. Crop Protection, 2013; 53: 109–117. doi: 10.1016/j.cropro.2013.06.017.
Fritz B K, Hoffmann W C. Update to the USDA-ARS fixed-wing spray nozzle models. Transactions of the ASABE, 2015; 58(2): 281-295. doi: 10.13031/trans.58.10896.
Fritz B K, Hoffmann W C. Developing the USDA ARS spray nozzle models for rotary wing applications. Applied Engineering in Agriculture, 2017; 33(5): 631–640. doi: 10.13031/aea.12364.
Kluza P A, Kuna-Broniowska I, Parafiniuk S. Modeling and Prediction of the Uniformity of Spray Liquid Coverage from Flat Fan Spray Nozzles. Sustainability, 2019; 11(23): 6716. doi: 10.3390/su11236716.
Yates W E, Akesson N B, Bayer D. Effects of spray adjuvants on drift hazards. Transactions of the ASAE, 1976; 19(1): 41–0046. doi: 10.13031/2013.35963.
Bouse L F, Carlton J B, Jank P C. Effect of water soluble polymers on spray droplet size. Transactions of the ASAE, 1988; 31(6): 1633–1639. doi: 10.13031/2013.30911.
Bird S L, Esterly D M, Perry S G. Off-target deposition of pesticides from agricultural aerial spray applications. Journal of Environmental Quality, 1996; 25(5): 1095–1104. doi: 10.2134/ jeq1996.00472425002500050024x.
Kirk I W. Measurement and prediction of atomization parameters from fixed-wing aircraft spray nozzles. Transactions of the ASABE, 2007; 50(3): 693–703. doi: 10.13031/2013.23123.
Yates W E, Cowden R E, Akesson N B. Drop size spectra from nozzles in high-speed airstreams. Transactions of the ASAE, 1985; 28(2): 405–0410. doi: 10.13031/2013.32268.
Lan Y B, Hoffmann W C, Fritz B K, Martin D E, Lopez J D. Spray drift mitigation with spray mix adjuvants. Applied Engineering in Agriculture, 2008; 24(1): 5–10. doi: 10.13031/2013. 24157.
Celen I H. The effect of spray mix adjuvants on spray drift. Bulgarian Journal of Agricultural Science, 2010; 16(1): 105–110.
Guler H, Zhu H, Ozkan H E, Ling P. Characterization of hydraulic nozzles for droplet size and spray coverage. Atomization and Sprays, 2012; 22(8): 627–645. doi: 10.1615/AtomizSpr.2012006181.
Xiao L P, Zhu H, Wallhead M, Horst L, Ling P, Krause C R. Characterization of Biological Pesticide Deliveries through Hydraulic Nozzles. Transactions of the ASABE, 2018; 61(3): 897–908. doi: 10.13031/trans.12698.
Bouse L F. Effect of nozzle type and operation on spray droplet size. Transactions of the ASAE, 1994; 37(5): 1389–1400. doi: 10.13031/ 2013.28219.
Huang Y B, Zhan W, Fritz B K, Thomson S J, Fang A. Analysis of impact of various factors on downwind deposition using a simulation method. ASTM International, 2010; 7(6): 1–10. doi: 10.1520/ STP152720120015.
Huang Y B, Thomson S J. Characterization of in-swath spray deposition for CP-11TT flat-fan nozzles used in low-volume aerial application of crop production and protection materials. Transactions of the ASABE, 2011; 54(6): 1973–1979. doi: 10.13031/2013.40645.
Czaczyk Z. Influence of air flow dynamics on droplet size in conditions of air-assisted sprayers. Atomization and Sprays, 2012; 22(4): 275–282. doi: 10.1615/AtomizSpr.2012003788.
Miller P C H, Ellis M C B. Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers. Crop protection, 2000; 19(8-10): 609–615. https://doi.org/10.1016/ S0261-2194(00)00080-6.
Henry R S, Fritz B K, Hoffmann W C, Kruger G R. An evaluation of three drift reduction adjuvants for aerial application of pesticides. GSTF Journal on Agricultural Engineering (JAE), 2015; 2(1): 39–47. doi:10.7603/s40 872-015-0006-3.
Dodge T. New spray technology driven by drift. American Farm Industry News, 1998; Mar 1. http://www.farmindustrynews.com/ new-spray-technology-driven-drift.
Lan Y B, Chen S D, Fritz B K. Current status and future trends of precision agricultural aviation technologies. International Journal of Agricultural and Biological Engineering, 2017; 10(3): 1–17. doi: 10.3965/j.ijabe.20171003.3088.
Mayo A J, Nohria N, Rennella M. C. E. Woolman and Delta Air Lines. In Entrepreneurs, Managers, and Leaders, New York: Palgrave Macmillan, 2009. pp. 61–80.
Zhou Z Y, Ming R, Zang Y, He X G, Luo X W, Lan, Y B. Development status and countermeasures of agricultural aviation in China. Transactions of the CSAE, 2017; 33(20): 1–13. doi: 10.11975/ j.issn.1002-6819.2017.20.001. (in Chinese)
Yin X C, Lan Y B, Wen S, Deng J Z, Zhang J L, Zhang J T. The development of Japan agricultural aviation technology and its enlightenment for China. Journal of South China Agricultural University, 2018; 39: 1–8. doi: 10.7671/j.issn.1001-411X.2018.02.001. (in Chinese)
Carlton J B, Isler D A. Development of a device to charge aerial sprays electrostatically. Agricultural Aviation, 1966; 8(2): 44–51.
Bretthauer S. Aerial applications in the USA. Outlooks on Pest Management, 2015; 26(5): 192–198. doi: 10.1564/v26_oct_02.
Sidahmed M M, Taher M D, Brown R B. A virtual nozzle for simulation of spray generation and droplet transport. Biosystems engineering, 2005; 92(3): 295–307. doi: 10. 1016/j.biosystemseng.2005.07.012.
Fox R D, Derksen R C, Zhu H, Brazee R D, Svensson S A. A history of air-blast sprayer development and future prospects. Transactions of the ASABE, 2008; 51(2): 405–410. doi: 10.13031/2013.24375.
Fritz B K, Hoffmann W C, Bagley W E, Kruger G R, Czaczyk Z, Henry R S. Influence of air shear and adjuvants on spray atomization. Pesticide Formulation and Delivery Systems 1569, 2014; 33:151–173. doi: 10.1520/STP156920120129.
ANSI/ASAE Standards S327.4. Terminology and Definitions for Application of Crop, Animal, or Forestry Production and Protection Agents. St. Joseph, Mich.: ASABE, 2012.
He Y, Xiao S P, Fang H, Dong T, Tang Y, Nie P C, et al. Development situation and spraying decision of spray nozzle for plant protection UAV. Transactions of the CSAE, 2018; 34(13): 113 –124. doi: 10.11975/ j.issn.1002–6819. 2018.13.014. (in Chinese)
Gil E, Balsari P, Gallart M, Llorens J, Marucco P, Andersen P G, et al. Determination of drift potential of different flat fan nozzles on a boom sprayer using a test bench. Crop Protection, 2014; 56: 58–68. doi: 10.1016/j.cropro.2013.10.018.
Kirk I W. Droplet spectra classification for fixed-wing aircraft spray nozzles. ASAE Paper No. 011082. ASAE, St. Joseph, MI, 2001. doi: 10.13031/2013.3433.
Pilch M, Erdman C A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. International journal of multiphase flow, 1987; 13(6): 741–757. doi: 10.1016/0301-9322 (87)90063-2.
Hayashi H, Takeda S. Spray Drying Characteristics by a Centrifugal Pressure Nozzle with Large Orifice Diameter. Drying Technology, 1986; 4(3): 331–342. doi: 10.1080/07373938608916333.
Masters K. Spray Drying, 2. New York: John Wiley & Sons. 1976.
Hewitt A J. Droplet size spectra produced by air-assisted atomizers. Journal of aerosol science, 1993; 24(2): 155–162. doi: 10.1016/ 0021-8502(93)90055-E.
Teske M E, Hewitt A J, Mickle R E. The measurement of droplet size distributions from rotary atomizers. In Pesticide Formulations and Application Systems: A New Century for Agricultural Formulations, 2001; 21: 197–209. doi: 10.1520/STP10729S.
Hoffmann W C, Walker T W, Smith V L, Martinand D E, Fritz B K. Droplet size characterization of hand held atomization equipment typically used in vector control. Journal of the American mosquito control association, 2007; 23(3), 315–320. doi: 10.2987/8756-971X(2007)23 [315:DCOHAE]2.0.CO;2.
Martin D E, Latheef M A, López Jr J D. Electrostatically charged aerial application improved spinosad deposition on early season cotton. Journal of Electrostatics, 2019; 97: 121–125. doi: 10.1016/j.elstat.2018.12.005.
Martin D E, Latheef M A. Aerial application methods control spider mites on corn in Kansas, USA. Experimental and Applied Acarology, 2019; 77(4): 571–582. doi: 10.1007/s10493-019-00367-3.
Law S E, Bowen H D. Charging liquid spray by electrostatic induction. TRANSACTIONS of the ASAE, 1966; 9(4): 501–0506. doi: 10.13031/ 2013.40016.
Carlton J B. Electrical capacitance determination and some implications for an electrostatic spray-charging aircraft. Transactions of the ASAE, 1975; 18(4): 641–0644. doi: 10.13031/2013.36651.
Carlton J B, Bouse L F, Kirk I W. Electrostatic charging of aerial spray
over cotton. Transactions of the ASAE, 1995; 38(6): 1641–1645. doi: 10.13031/2013.27989.
Zhang Y L, Lan Y B, Bradley K, Xue X Y. Development of aerial electrostatic spraying systems in the United States and applications in China. Transactions of the Chinese Society of Agricultural Engineering, 2016; 32(10): 1–7. doi: 10.11975/j.issn.1002-6819.2016.10.001. (in Chinese)
Zhou H P, Ru Y, Shu C R, Jia Z C. Improvement and experiment of aerial electrostatic spray device. Transactions of the CSAE, 2012; 28(12): 7–12. doi:10.3969/j.issn.1002-6819.2012.12.002. (in Chinese)
Lan Y B, Zhang H Y, Wen S. Analysis and experiment on atomization characteristics and spray deposition of electrostatic nozzle. Transactions of the CSAM, 2018; 49: 130–139. doi: 10.6041/j.issn.1000-1298.2018. 04.015. (in Chinese)
Lafferty C L, Tian L F. The impacts of pre-orifice and air-inlet design features on nozzle performance. ASAE Paper No. 011079. ASAE, St. Joseph, MI, 2001. doi: 10.13031/2013.7343.
Zhu H, Reichard D L, Fox R D, Brazee R D, Ozkan H E. Simulation of drift of discrete sizes of water droplets from field sprayers. Transactions of the ASAE, 1994; 37(5): 1401–1407. doi: 10.13031/2013.28220.
Bouse L F, Carlton J B, Mitchel R D, Jank P C. Atomization of vegetable oils in an airstream. Transactions of the ASAE, 1990; 32(6): 1829–1836. doi: 10.13031/2013.31230.
Nuyttens D, Baetens K, De Schampheleire M, Sonck B. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosystems engineering, 2007; 97(3): 333–345. doi: 10.1016/j.biosystemseng.2007. 03.001.
Nuyttens D, De Schampheleire M, Baetens K, Sonck B. The influence of operator-controlled variables on spray drift from field crop sprayers. Transactions of the ASABE, 2007; 50(4): 1129–1140. doi: 10.13031/2013.23622.
Nuyttens D, Taylor W A, De Schampheleire M, Verboven P, Dekeyser D. Influence of nozzle type and size on drift potential by means of different wind tunnel evaluation methods. Biosystems engineering, 2009; 103(3): 271–280. doi: 10.1016/j.biosystemseng.2009.04.001.
Miller P C H, Tuck C R, Murphy S, Da Costa Ferreira M. Measurements of the droplet velocities in sprays produced by different designs of agricultural spray nozzle. Paper ID ILASS08–8-5, 22nd ILASS-Europe, 2008; 8-10.
AI Heidary M, Douzals J P, Sinfort C, Vallet A. Influence of spray characteristics on potential spray drift of field crop sprayers: A literature review. Crop protection, 2014; 63: 120–130. doi: 10.1016/ j.cropro.2014.05.006.
Yates W E, Cowden R E, Akesson N B. Nozzle orientation, air speed and spray formulation affects on drop size spectrums. Transactions of the ASAE, 1983; 26(6): 1638–1643. doi: 10.13031/2013.33816.
Wolf R E, Bretthauer D S, Gardisser R. Determining the affect of flat-fan nozzle angle on aerial spray droplet spectra. ASAE Paper No. AA05e003. ASAE , St. Joseph, MI, 2005.
Bouse L F, Carlton J B. Factors affecting size distribution of vegetable oil spray droplets. Transactions of the ASAE, 1985; 28(4): 1068–1073. doi: 10.13031/2013.32389.
Lane W R. Shatter of drops in streams of air. Industrial & Engineering Chemistry, 1951; 43(6): 1312–1317.
Fraser R P, Eisenklam P. Liquid atomization and the drop size of sprays. Institution of Chemical Engineers, 1956; 34(4): 294–313.
Fritz B, Hoffmann W, Henry R. The effect of adjuvants at high spray pressures for aerial applications. In Pesticide Formulation and Delivery System, 2016; 36: 133–148. doi: 10.1520/STP159520150086.
Kirk I W. Aerial applicators spray nozzle handbook. USDA Agricultural Research Service, Washington, D.C., USA, 2004.
Yao W X, Lan Y B, Hoffmann W C, Guo S, Chen S D, Wen Z, et al. Atomization characteristics of multi-type aerial nozzles in wind tunnel and low airflow velocity condition in manned agricultural helicopter. International Journal of Precision Agricultural Aviation, 2019; 2(1): 9–17. doi: 10.33440/j.ijpaa.20190201.0031.
Spanoghe P, Schampheleire M D, Meeren P V d, Steurbaut W. Influence of agricultural adjuvants on droplet spectra. Pest Management Science: formerly Pesticide Science, 2007; 63(1): 4–16. doi: 10.1002/ps.1321.
Spanoghe P, Eeckhout H V, Steurbaut W, Meeren P V d. The effect of static and dynamic surface tension on atomization with agricultural nozzles. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet, 2002; 67(2): 37–45.
Hewitt A J. Spray optimization through application and liquid physical property variables-I. The Environmentalist, 2008; 28(1): 25–30. doi: 10.1007/s10669-007-9044-5.
Kirk I W. Spray mix adjuvants for spray drift mitigation-progress report. ASAE Paper No. 031060. ASAE, St. Joseph, MI, 2003. doi: 10.13031/ 2013.13721.
Akesson N B, Steinke W E, Yates W E. Spray atomization characteristics as a function of pesticide formulations and atomizer design. Journal of Environmental Science & Health Part B, 1994; 29(4): 785–814. doi: 10.1080/03601239409372904.
Gratkowski H, Stewart R. Aerial spray adjuvants for herbicidal drift control. General Technical Report PNW-3. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1973. 24p.
Guler H, Zhu H, Ozkan E, Derksen R, Krause C. Wind tunnel evaluation of drift reduction potential and spray characteristics with drift retardants at high operating pressure. Journal of ASTM International, 2006; 3(5): 1–9. doi: 10.1520/JAI13527.
Ellis M C B, Tuck C R, Miller P C H. How surface tension of surfactant solutions influences the characteristics of sprays produced by hydraulic nozzles used for pesticide application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001; 180(3): 267–276. doi: 10.1016/S0927-7757(00) 00776-7.
Dombrowski N, Fraser R P. A photographic investigation into the disintegration of liquid sheets. Philosophical Transaction of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1954; 247(924): 101–130. doi: 10.1098/rsta.1954.0014.
Hewitt A J. The effects of tank mix and adjuvants on spray drift. In Proceedings of 5th International Symposium on Adjuvants for Agrochemicals (ISAA 1998), 1998; 451–462.
Ellis M C B, Tuck C R. The variation in characteristics of air-included sprays with adjuvants. Aspects of Applied Biology, 2000; 57:155–162.
Hazen J L. Adjuvants-terminology, classiï¬cation, and chemistry. Weed Technology, 2000; 14(4): 773–784. doi: 10.1614/0890-037X(2000)014 [0773:ATCAC]2.0.CO;2.
Ellis M B, Tuck C R. The effect of liquid properties on spray formation by flat fan nozzles. Aspect of Applied Biology (United Kingdom), 1997; 48: 105–112.
Western N M, Hislop E C, Bieswal M, Holloway P J, Coupland D. Drift reduction and droplet-size in sprays containing adjuvant oil emulsions. Pest Management Science, 1999; 55(6): 640–642. doi: 10.1002/(SICI) 1096-9063(199906)55:6%3C640::AID-PS985%3E3.0.CO;2-U.
Dexter R W. The effect of fluid properties on the spray quality from a flat fan nozzle. In Pesticide Formulations and Application Systems. ASTM STP 1400, 2001; 20: 27–43.
Combellack J H, Westen N M, Richardson R G. A comparison of the drift potential of a novel twin fluid nozzle with conventional low volume flat fan nozzles when using a range of adjuvants. Crop Protection, 1996; 15(2): 147–152. doi: 10.1016/0261-2194(95)00089-5.
Stainier C, Destain M F, Schiffers B, Lebeau F. Droplet size spectra and drift effect of two phenmedipham formulations and four adjuvants mixtures. Crop Protection, 2006; 25(12): 1238–1243. doi: 10.1016/ j.cropro.2006.03.006.
Hoffmann W C, Fritz B K, Yang C. Effects of spray adjuvants on spray droplet size from a rotary atomizer, In Pesticide Formulation and Delivery Systems, 2016; 35: 52–60. doi: 10. 1520/STP158720140099.
Fritz B K, Hoffmann W C, Gizotti-De-Moraes J, Guerrerio M, Golus J, Kruger G. The impact of spray adjuvants on solution physical properties and spray droplet size. In Pesticide Formulation and Delivery Systems, 2018; 37: 22–32. doi: 10.1520/STP160220160134.
Wolf R E, Gardisser D R. Field comparisons for drift-reducing/ depositionaid tank mixes. ASAE Paper No. AA03-002. ASAE, St. Joseph, MI, 2003.
Wolf R E, Gardisser D R, Minihan C. Comparing drift reducing tank mixes for aerial applications. Agricultural Aviation, 2003; 30(2): 14–21.
Wolf R E, Gardisser D R, Loughin T M. Comparison of drift reducing/deposition aid tank mixes for fixed wing aerial applications. Journal of ASTM International, 2005; 2(8): 1–14. doi: 10.1520/ JAI12921.
Fritz B K, Hoffmann W C, Bagley W E. Effects of spray mixtures on droplet size under aerial application conditions and implications on drift. Applied Engineering in Agriculture, 2010; 26(1): 21–29. doi: 10.13031/ 2013.29467.
Fritz B K, Hoffmann W C, Bretthauer S, Wolf R E, Bagley W E. Wind tunnel and field evaluation of drift from aerial spray applications with multiple spray formulations. In Pesticide Formulations and Delivery Systems, 2013; 32: 96–113. doi: 10.1520/STP104403.
Wang X N, He X K, Song J L, Herbst A. Effect of adjuvant types and concentration on spray drift potential of different nozzles. Transactions of the CSAE, 2015; 31(22): 49–55. doi: 10.11975/j.issn.1002-6819. 2015.22.007.
Chen X, Gong Y, Liu D J, Wang G, Zhang X. Effect of additives on atomization of pesticides and nozzles. ASAE Paper No. 1901399. ASAE, St. Joseph, MI, 2019. doi: doi: 10.13031/aim.201901399.
Doble S J, Matthews G A, Rutherford I, Southcombe E S E. A system for classifying hydraulic and other atomizers into categories of spray quality. In Proceedings of British Crop Protection Conference – Weeds, 1985; 3: 1125–1133.
Southcombe E S E, Miller P C H, Ganzelmeier H, van de Zande J C, Miralles A, Hewitt A J. The international (BCPC) spray classification system including a drift potential factor. In Proceeding of the Brighton Crop Protection Conference – Weeds, 1997; 371–380.
ANSI/ASAE Standards, S572.1, Spray nozzle classification by droplet spectra. St. Joseph, Mich.: ASABE, 2009.
ASAE Standards, S358.2, Standards engineering practices data, St. Joseph, Mich.: ASABE, 2000.
Box G E, Behnken D W. Some new three-level designs for the study of quantitative variables. Technometrics, 1960; 2(4): 455–475. doi: 10.2307/1266454.
Kirk I W. Measurement and prediction of helicopter spray nozzle atomization. Transaction of the ASAE, 2002; 45(1): 27–37. doi: 10.13031/2013.7866.
Teske M E, Thistle H W, Fritz B K. Modeling aerially applied sprays: An update to AGDISP model development. Transactions of the ASABE, 2019; 62(2): 343–354. doi: 10.13031/trans.13129.
Hewitt A J. Droplet size spectra classification categories in aerial application scenarios. Crop Protection, 2008; 27(9): 1284–1288.
Fritz B K, Hoffmann W C. Establishing reference nozzles for classification of aerial application spray technologies. International Journal of Precision Agricultural Aviation, 2018; 1(1): 10–14. doi: 10.33440/j.ijpaa.20180101.0003.
Walker J T, Bansal R K. Development and characterization of variable orifice nozzles for spraying agro-chemicals. ASAE Paper No. 991008. ASAE, St. Joseph, MI, 1999.
Womac A R, Bui Q D. Variable-flow control device for precision application. U.S. Patent No. 5,908,161. Washington, DC: U.S. Patent and Trademark Office, 1999.
Daggupati N P. Assessment of the varitarget nozzle for variable rate application of liquid crop protection products. Doctoral dissertation, Kansas State University, India, 2007.
Funsenth T G, Mercer D S, Humpal R A. Sprayer pulsing nozzle flow control using rotational step positions, U.S. Patent Application No.13/333,541, Washington, DC: U.S. Patent and Trademark Office, 2013.
Needham D L, Holtz A J, Giles D K. Actuator system for individual nozzle control of flow rate and spray droplet size. Transactions of the ASABE, 2012; 55(2): 379–386. doi: 10.13031/2013.41376.
Giles D K, Ben-Salem E. Spray droplet velocity and energy in intermittent flow from hydraulic nozzles. Journal of Agricultural Engineering Research, 1992; 51: 101–112. doi: 10. 1016/0021-8634(92) 80029-R.
Giles D K, Henderson G W, Funk K. Digital control of flow rate and spray droplet size from agricultural nozzles for precision chemical application. Precision Agriculture, precisionagricu3, 1996; 3: 729–738.
Gopalapillai S, Tian L, Zheng J. Evaluation of a flow control system for site-specific herbicide applications. Transactions of the ASAE, 1999; 42(4): 863–870. doi: 10.13031/2013.13265.
Shahemabadi A R, Moayed M J. An algorithm for pulsed activation of solenoid valves for variable rate application of agricultural chemical. IEEE International Symposium on Information Technology, 2008; 4: 1–3. doi: 10.1109/ITSIM.2008.4631863.
Gu J, Zhu H, Ding W, Jeon H Y. Droplet size distributions of adjuvant-amended sprays from an air-assisted five-port PWM nozzle. Atomization and sprays, 2011; 21(3): 263–274. doi: 10.1615/ AtomizSpr.2011003258.
Liu H, Zhu H, Shen Y, Chen Y, Ozkan H E. Development of digital flow control system for copy multi-channel variable-rate sprayers. Transactions of the ASABE, 2014; 57(1): 273–281. doi: 10.13031/ trans.57.10216.
Qiu B J, Yan R, Ma J, Guan X P, Ou M X. Research progress analysis of variable rate sprayer technology. Transactions of the CSAM, 2015; 46(3): 59–72. doi: 10.6041/j.issn.1000-1298. 2015.03.009. (in Chinese)
Butts T R, Butts L E, Luck J D, Fritz B K, Hoffmann W C, Kruger G R. Droplet size and nozzle tip pressure from a pulse-width modulation sprayer. Biosystems Engineering, 2019; 178: 52–69. doi: 10.1016/ j.biosystemseng.2018.11.004.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.